Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Learning from Demonstration (LfD) is a powerful method for nonroboticists end-users to teach robots new tasks, enabling them to customize the robot behavior. However, modern LfD techniques do not explicitly synthesize safe robot behavior, which limits the deployability of these approaches in the real world. To enforce safety in LfD without relying on experts, we propose a new framework, ShiElding with Control barrier fUnctions in inverse REinforcement learning (SECURE), which learns a customized Control Barrier Function (CBF) from end-users that prevents robots from taking unsafe actions while imposing little interference with the task completion. We evaluate SECURE in three sets of experiments. First, we empirically validate SECURE learns a high-quality CBF from demonstrations and outperforms conventional LfD methods on simulated robotic and autonomous driving tasks with improvements on safety by up to 100%. Second, we demonstrate that roboticists can leverage SECURE to outperform conventional LfD approaches on a real-world knife-cutting, meal-preparation task by 12.5% in task completion while driving the number of safety violations to zero. Finally, we demonstrate in a user study that non-roboticists can use SECURE to efectively teach the robot safe policies that avoid collisions with the person and prevent cofee from spilling.more » « lessFree, publicly-accessible full text available March 11, 2025
-
Aleksandra Faust, David Hsu (Ed.)Modern Reinforcement Learning (RL) algorithms are not sample efficient to train on multi-step tasks in complex domains, impeding their wider deployment in the real world. We address this problem by leveraging the insight that RL models trained to complete one set of tasks can be repurposed to complete related tasks when given just a handful of demonstrations. Based upon this insight, we propose See-SPOT-Run (SSR), a new computational approach to robot learning that enables a robot to complete a variety of real robot tasks in novel problem domains without task-specific training. SSR uses pretrained RL models to create vectors that represent model, task, and action relevance in demonstration and test scenes. SSR then compares these vectors via our Cycle Consistency Distance (CCD) metric to determine the next action to take. SSR completes 58% more task steps and 20% more trials than a baseline few-shot learning method that requires task-specific training. SSR also achieves a four order of magnitude improvement in compute efficiency and a 20% to three order of magnitude improvement in sample efficiency compared to the baseline and to training RL models from scratch. To our knowledge, we are the first to address multi-step tasks from demonstration on a real robot without task-specific training, where both the visual input and action space output are high dimensional. Code is available in the supplement.more » « less
-
Faust, Aleksandra ; Hsu, David ; Neumann, Gerhard (Ed.)Enabling human operators to interact with robotic agents using natural language would allow non-experts to intuitively instruct these agents. Towards this goal, we propose a novel Transformer-based model which enables a user to guide a robot arm through a 3D multi-step manipulation task with natural language commands. Our system maps images and commands to masks over grasp or place locations, grounding the language directly in perceptual space. In a suite of block rearrangement tasks, we show that these masks can be combined with an existing manipulation framework without re-training, greatly improving learning efficiency. Our masking model is several orders of magnitude more sample efficient than typical Transformer models, operating with hundreds, not millions, of examples. Our modular design allows us to leverage supervised and reinforcement learning, providing an easy interface for experimentation with different architectures. Our model completes block manipulation tasks with synthetic commands more often than a UNet-based baseline, and learns to localize actions correctly while creating a mapping of symbols to perceptual input that supports compositional reasoning. We provide a valuable resource for 3D manipulation instruction following research by porting an existing 3D block dataset with crowdsourced language to a simulated environment. Our method’s absolute improvement in identifying the correct block on the ported dataset demonstrates its ability to handle syntactic and lexical variation.more » « less
-
Collaborative robots that work alongside humans will experience service breakdowns and make mistakes. These robotic failures can cause a degradation of trust between the robot and the community being served. A loss of trust may impact whether a user continues to rely on the robot for assistance. In order to improve the teaming capabilities between humans and robots, forms of communication that aid in developing and maintaining trust need to be investigated. In our study, we identify four forms of communication which dictate the timing of information given and type of initiation used by a robot. We investigate the effect that these forms of communication have on trust with and without robot mistakes during a cooperative task. Participants played a memory task game with the help of a humanoid robot that was designed to make mistakes after a certain amount of time passed. The results showed that participants' trust in the robot was better preserved when that robot offered advice only upon request as opposed to when the robot took initiative to give advice.more » « less