skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gomes, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polar codes have been shown to provide an effective mechanism for achieving physical-layer security over various wiretap channels. A majority of these schemes require channel state information (CSI) at the encoder for both intended receivers and eavesdroppers. In this paper, we consider a polar coding scheme for secrecy over a Gaussian wiretap channel when no CSI is available. We show that the availability of a shared keystream between friendly parties allows polar codes to be used for both secure and reliable communications, even when the eavesdropper knows a large fraction of the keystream. The scheme relies on a predetermined strategy for partitioning the bits to be encoded into a set of frozen bits and a set of information bits. The frozen bits are filled with bits from the keystream, and we evaluate the security gap when the cyclic redundancy check-aided successive cancellation list decoder is used at both receivers in the wiretap channel model. 
    more » « less
  2. In order to secure wireless communications, we consider the usage of physical-layer security (PLS) mechanisms (i.e., coding for secrecy mechanisms) combined with self-interference generation. We present a prototype implementation of a scrambled coding for secrecy mechanisms with interference generation by the legitimate receiver and the cancellation of the effect of self-interference (SI). Regarding the SI cancellation, four state-of-the-art algorithms were considered: Least mean square (LMS), normalized least mean square (NLMS), recursive least squares (RLS) and QR decomposition recursive least squares (QRDRLS). The prototype implementation is performed in real-world software-defined radio (SDR) devices using GNU-Radio, showing that the LMS outperforms all other algorithms considered (NLMS, RLS and QRDRLS), being the best choice to use in this situation (SI cancellation). It was also shown that it is possible to secure communication using only noise generation by the legitimate receiver, though a variation of the packet loss rate (PLR) and the bit error rate (BER) gaps is observed when moving from the fairest to an advantageous or a disadvantageous scenario. Finally, when noise generation was combined with the adapted scrambled coding for secrecy with a hidden key scheme, a noteworthy security improvement was observed resulting in an increased BER for Eve with minor interference to Bob. 
    more » « less
  3. In order to secure wireless communications, we consider the usage of physical-layer security (PLS) mechanisms (i.e. coding for secrecy mechanisms) combined with self-interference generation. We present a prototype implementation of a scrambled coding for secrecy mechanism with interference generation by the legitimate receiver and the cancellation of the effect of self-interference (SI). Regarding the SI cancellation, two algorithms were evaluated: least mean square and recursive least squares. The prototype implementation is performed in real-world software-defined radio (SDR) devices using GNU-Radio. 
    more » « less
  4. This paper presents a new technique for providing the analysis and comparison of wiretap codes in the small blocklength regime over the binary erasure wiretap channel. A major result is the development of Monte Carlo strategies for quantifying a code's equivocation, which mirrors techniques used to analyze forward error correcting codes. For this paper, we limit our analysis to coset-based wiretap codes, and give preferred strategies for calculating and/or estimating the equivocation in order of preference. We also make several comparisons of different code families. Our results indicate that there are security advantages to using algebraic codes for applications that require small to medium blocklengths. 
    more » « less