skip to main content


Title: SDR Proof-of-Concept of Full-Duplex Jamming for Enhanced Physical Layer Security

In order to secure wireless communications, we consider the usage of physical-layer security (PLS) mechanisms (i.e., coding for secrecy mechanisms) combined with self-interference generation. We present a prototype implementation of a scrambled coding for secrecy mechanisms with interference generation by the legitimate receiver and the cancellation of the effect of self-interference (SI). Regarding the SI cancellation, four state-of-the-art algorithms were considered: Least mean square (LMS), normalized least mean square (NLMS), recursive least squares (RLS) and QR decomposition recursive least squares (QRDRLS). The prototype implementation is performed in real-world software-defined radio (SDR) devices using GNU-Radio, showing that the LMS outperforms all other algorithms considered (NLMS, RLS and QRDRLS), being the best choice to use in this situation (SI cancellation). It was also shown that it is possible to secure communication using only noise generation by the legitimate receiver, though a variation of the packet loss rate (PLR) and the bit error rate (BER) gaps is observed when moving from the fairest to an advantageous or a disadvantageous scenario. Finally, when noise generation was combined with the adapted scrambled coding for secrecy with a hidden key scheme, a noteworthy security improvement was observed resulting in an increased BER for Eve with minor interference to Bob.

 
more » « less
Award ID(s):
1910812
NSF-PAR ID:
10490046
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Sensors
Volume:
21
Issue:
3
ISSN:
1424-8220
Page Range / eLocation ID:
856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In order to secure wireless communications, we consider the usage of physical-layer security (PLS) mechanisms (i.e. coding for secrecy mechanisms) combined with self-interference generation. We present a prototype implementation of a scrambled coding for secrecy mechanism with interference generation by the legitimate receiver and the cancellation of the effect of self-interference (SI). Regarding the SI cancellation, two algorithms were evaluated: least mean square and recursive least squares. The prototype implementation is performed in real-world software-defined radio (SDR) devices using GNU-Radio. 
    more » « less
  2. Hybrid wireless networks are foreseen to play a major role in the visioning and planning of the sixth generation (6G) network. Most of the 6G applications are human-centric, and thus high security and privacy are key features. Recently, physical layer (PHY) security has become an emerging area of research. This work introduces a novel, to the best of our knowledge, PHY security approach called wireless link pairing (WiLP). In WiLP, signals received from both air interfaces in a hybrid radio frequency and optical network are required for successful signal reconstruction and processing at the receiver. The transmitted packets based on the IEEE 802.11 standards are redesigned, and improvements in performance are validated via simulations and experimental measurements using software-defined radio platforms. The obtained results demonstrate improvements in bit-error rate (BER) and the secrecy capacity for multiple modulation and coding schemes.

     
    more » « less
  3. null (Ed.)
    In this paper, we show that caching can aid in achieving secure communications by considering a wiretap scenario where the transmitter and legitimate receiver share access to a secure cache, and an eavesdropper is able to tap transmissions over a binary erasure wiretap channel during the delivery phase of a caching protocol. The scenario under consideration gives rise to a new channel model for wiretap coding that allows the transmitter to effectively choose a subset of bits to erase at the eavesdropper by caching the bits ahead of time. The eavesdropper observes the remainder of the coded bits through the wiretap channel for the general case. In the wiretap type-II scenario, the eavesdropper is able to choose a set of revealed bits only from the subset of bits not cached. We present a coding approach that allows efficient use of the cache to realize a caching gain in the network, and show how to use the cache to optimize the information theoretic security in the choice of a finite blocklength code and the choice of the cached bit set. To our knowledge, this is the first work on explicit algorithms for secrecy coding in any type of caching network. 
    more » « less
  4. Due to the open nature of wireless medium, wireless communications are especially vulnerable to eavesdropping attacks. This paper designs a new wireless communication system to deal with eavesdropping attacks. The proposed system can enable a legitimate receiver to get desired messages and meanwhile an eavesdropper to hear ``fake" but meaningful messages by combining confidentiality and deception, thereby confusing the eavesdropper and achieving additional concealment that further protects exchanged messages. Towards this goal, we propose techniques that can conceal exchanged messages by utilizing wireless channel characteristics between the transmitter and the receiver, as well as techniques that can attract an eavesdropper to gradually approach a trap region, where the eavesdropper can get fake messages. We also provide both theoretical and empirical analysis of the established secure channel between the transmitter and the receiver. We develop a prototype system using Universal Software Defined Radio Peripherals (USRPs)Experimental results show that an eavesdropper at a trap location can receive fake information with a bit error rate (BER) close to 0, and the transmitter with multiple antennas can successfully deploy a trap area. 
    more » « less
  5. This article investigates a robust receiver scheme for a single carrier, multiple-input–multiple-output (MIMO) underwater acoustic (UWA) communications, which uses the sparse Bayesian learning algorithm for iterative channel estimation embedded in Turbo equalization (TEQ). We derive a block-wise sparse Bayesian learning framework modeling the spatial correlation of the MIMO UWA channels, where a more robust expectation–maximization algorithm is proposed for updating the joint estimates of channel impulse response, residual noise, and channel covariance matrix. By exploiting the spatially correlated sparsity of MIMO UWA channels and the second-order a priori channel statistics from the training sequence, the proposed Bayesian channel estimator enjoys not only relatively low complexity but also more stable control of the hyperparameters that determine the channel sparsity and recovery accuracy. Moreover, this article proposes a low complexity space-time soft decision feedback equalizer (ST-SDFE) with successive soft interference cancellation. Evaluated by the undersea 2008 Surface Processes and Acoustic Communications Experiment, the improved sparse Bayesian learning channel estimation algorithm outperforms the conventional Bayesian algorithms in terms of the robustness and complexity, while enjoying better estimation accuracy than the orthogonal matching pursuit and the improved proportionate normalized least mean squares algorithms. We have also verified that the proposed ST-SDFE TEQ significantly outperforms the low-complexity minimum mean square error TEQ in terms of the bit error rate and error propagation. 
    more » « less