- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Gong, M. (2)
-
Arul Kumar, M. (1)
-
Batmanghelich, K. (1)
-
Beyerlein, I.J. (1)
-
Bhuvanesh, Nattamai (1)
-
Cardenal, Ashley (1)
-
Cascante-Bonilla, P (1)
-
Chu, Gong M. (1)
-
Ehnbom, Andreas (1)
-
Fiedler, Tobias (1)
-
Fu, H. (1)
-
Gladysz, John A. (1)
-
Gong, M (1)
-
Hall, Michael B. (1)
-
Ordonez, V (1)
-
Tao, D. (1)
-
Tomé, C.N. (1)
-
Wang, C. (1)
-
Wang, J. (1)
-
Wu, J (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce AutoVER, an Autoregressive model for Visual Entity Recognition. Our model extends an autoregressive Multimodal Large Language Model by employing retrieval augmented constrained generation. It mitigates low performance on out-of-domain entities while excelling in queries that require visual reasoning. Our method learns to distinguish similar entities within a vast label space by contrastively training on hard negative pairs in parallel with a sequence-to-sequence objective without an external retriever. During inference, a list of retrieved candidate answers explicitly guides language generation by removing invalid decoding paths. The proposed method achieves significant improvements across different dataset splits in the recently proposed Oven-Wikibenchmark with accuracy on the Entity seen split rising from 32.7% to 61.5%. It demonstrates superior performance on the unseen and query splits by a substantial double-digit margin, while also preserving the ability to effectively transfer to other generic visual question answering benchmarks without further training.more » « less
-
Zarcone, Samuel R.; Chu, Gong M.; Ehnbom, Andreas; Cardenal, Ashley; Fiedler, Tobias; Bhuvanesh, Nattamai; Hall, Michael B.; Gladysz, John A. (, Inorganic Chemistry)null (Ed.)
-
Arul Kumar, M.; Gong, M.; Beyerlein, I.J.; Wang, J.; Tomé, C.N. (, Acta Materialia)
-
Fu, H.; Gong, M.; Wang, C.; Batmanghelich, K.; Zhang, K.; Tao, D. (, IEEE Conference on Computer Vision and Pattern Recognition)
An official website of the United States government

Full Text Available