skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goodenough, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. We present details on a new measurement of the muon magnetic anomaly, a μ = ( g μ 2 ) / 2 . The result is based on positive muon data taken at Fermilab’s Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses 3.1 GeV / c polarized muons stored in a 7.1-m-radius storage ring with a 1.45 T uniform magnetic field. The value of a μ is determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using nuclear magnetic resonance. The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure a μ = 116 592 057 ( 25 ) × 10 11 (0.21 ppm). This is the world’s most precise measurement of this quantity and represents a factor of 2.2 improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield a μ ( FNAL ) = 116 592 055 ( 24 ) × 10 11 (0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is a μ ( exp ) = 116 592 059 ( 22 ) × 10 11 (0.19 ppm). Published by the American Physical Society2024 
    more » « less
  3. We present a new measurement of the positive muon magnetic anomaly, 𝑎𝜇≡(𝑔𝜇−2)/2, from the Fermilab Muon 𝑔−2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, 𝜔𝑝, and of the anomalous precession frequency corrected for beam dynamics effects, 𝜔𝑎. From the ratio 𝜔𝑎/𝜔𝑝, together with precisely determined external parameters, we determine 𝑎𝜇=116 592 057⁢(25)×10−11 (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain 𝑎𝜇⁡(FNAL)=116 592 055⁢(24)×10−11 (0.20 ppm). The new experimental world average is 𝑎𝜇⁡(exp)=116 592 059⁢(22)×10−11 (0.19 ppm), which represents a factor of 2 improvement in precision. 
    more » « less
  4. Abstract This article describes the setup and performance of the near and far detectors in the Double Chooz experiment. The electron antineutrinos of the Chooz nuclear power plant were measured in two identically designed detectors with different average baselines of about 400 m and 1050 m from the two reactor cores. Over many years of data taking the neutrino signals were extracted from interactions in the detectors with the goal of measuring a fundamental parameter in the context of neutrino oscillation, the mixing angle $$\theta _{13}$$ θ 13 . The central part of the Double Chooz detectors was a main detector comprising four cylindrical volumes filled with organic liquids. From the inside towards the outside there were volumes containing gadolinium-loaded scintillator, gadolinium-free scintillator, a buffer oil and, optically separated, another liquid scintillator acting as veto system. Above this main detector an additional outer veto system using plastic scintillator strips was installed. The technologies developed in Double Chooz were inspiration for several other antineutrino detectors in the field. The detector design allowed implementation of efficient background rejection techniques including use of pulse shape information provided by the data acquisition system. The Double Chooz detectors featured remarkable stability, in particular for the detected photons, as well as high radiopurity of the detector components. 
    more » « less