skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gora, Evan M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Lightning frequency in tropical forests has been increasing for decades and lightning is a major agent of forest biomass mortality, but the implications of increased lightning frequency are unclear. Here, we provide a species‐ and spatially explicit implementation of lightning in a mechanistic forest dynamics model. We evaluated the model's ability to reproduce current‐day observations in a Panamanian tropical forest, and the sensitivity of model outputs to plausible changes in lightning frequency. The lightning‐enabled model simulated aboveground biomass (AGB), carbon flux, and stem densities that were consistent with observations. As expected, AGB declined with increasing lightning frequency. However, the magnitude of AGB decline was greatly reduced when trees were assigned empirically derived, species‐specific lightning tolerances. Changes in species composition weakened the sensitivity of AGB to increasing lightning: the AGB of a small number of large‐statured, lightning‐tolerant species increased with increasing lightning frequency. In addition, the effect of lightning on AGB tended to saturate at high lightning frequencies because of the combined effect of changes in size structure and composition. Specifically, the number of large, lightning‐susceptible trees was relatively small at high lightning frequencies. Overall, this study shows that an empirically informed representation of lightning captures the contemporary effects of lightning on forests, indicates that changes in lightning frequency will change forest AGB, species composition, and size structure, and shows that forests can partially acclimate to higher lightning frequency through changes in composition. Thus, more widespread inclusion of the lightning into global ecosystem models would be an important step toward improving simulations of forest responses to global change. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Summary Lightning strikes kill hundreds of millions of trees annually, but their role in shaping tree life history and diversity is largely unknown.Here, we use data from a unique lightning location system to show that some individual trees counterintuitively benefit from being struck by lightning.Lightning killed 56% of 93 directly struck trees and caused an average of 41% crown dieback among the survivors. However, among these struck trees, 10 direct strikes caused negligible damage toDipteryx oleiferatrees while killing 78% of their lianas and 2.1 Mg of competitor tree biomass. Nine trees of other long‐lived taxa survived lightning with similar benefits. On average, aD. oleiferatree > 60 cm in diameter is struck by lightning at least five times during its lifetime, conferring these benefits repeatedly. We estimate that the ability to survive lightning increases lifetime fecundity 14‐fold, largely because of reduced competition from lianas and neighboring trees. Moreover, the unusual heights and wide crowns ofD. oleiferaincrease the probability of a direct strike by 49–68% relative to trees of the same diameter with average allometries.These patterns suggest that lightning plays an underappreciated role in tree competition, life history strategies, and species coexistence. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  4. ABSTRACT Lightning is an important agent of tree mortality and gap formation. Here we quantified spatial and temporal patterns of lightning‐caused canopy disturbance in a 50‐ha plot in Panama using monthly drone imagery, and compared these patterns with field measurements of disturbance severity and spatial extent. Of 22 lightning strikes that we tracked, the impacts of 18 were monitored for at least 12 months (range of 17–50 months), and 67% of these 18 strikes led to canopy disturbances. The mean time for the first and last canopy disturbance to appear post‐strike was 8.2 months (range: 0.8–14 months) and 14.6 months (range: 0.8–23.9 months), respectively. Canopy disturbances were generally highly irregular in shape (i.e., not circular), and clustered around the rooting point of the directly struck tree. A mean of 43% (± 19%) of the total lightning‐associated canopy disturbance area was within 10 m of the rooting point, whereas only 3% (± 5%) occurred 30–40 m from this point. Drone‐based measurements of canopy disturbance area and volume were good predictors of variation in ground‐estimated dead biomass (r2 = 0.48 and 0.46, respectively), reflecting their strong association with overstory dead biomass (r2 = 0.42 and 0.41, respectively). The total drone‐estimated canopy disturbance area was 49% of the ground‐estimated canopy disturbance area. Thus, lightning typically causes canopy disturbances that are detectable with drone imagery despite their irregular shape, and drone‐detected gap formation lags 8–15 months poststrike, potentially disconnecting drone‐detected disturbances from their ultimate cause. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  5. Urbanization tends to increase local lightning frequency (i.e. the ‘lightning enhancement’ effect). Despite many urban areas showing lightning enhancement, the prevalence of these effects is unknown and the drivers underlying these patterns are poorly quantified. We conducted a global assessment of cloud-to-ground lightning flashes (lightning strikes) across 349 cities to evaluate how the likelihood and magnitude of lightning enhancement vary with geography, climate, air pollution, topography and urban development. The likelihood of exhibiting lightning enhancement increased with higher temperature and precipitation in urban areas relative to their natural surroundings (i.e. urban heat islands and elevated urban precipitation), higher regional lightning strike frequency, greater distance to water bodies and lower elevations. Lightning enhancement was stronger in cities with conspicuous heat islands and elevated urban precipitation effects, higher lightning strike frequency, larger urban areas and lower latitudes. The particularly strong effects of elevated urban temperature and precipitation indicate that these are dominant mechanisms by which cities cause local lightning enhancement. 
    more » « less
  6. Lianas are major contributors to tropical forest dynamics, yet we know little about their mortality. Using overlapping censuses of the lianas and trees across a 50 ha stand of moist tropical forest, we contrasted community-wide patterns of liana mortality with relatively well-studied patterns of tree mortality to quantify patterns of liana death and identify contributing factors. Liana mortality rates were 172% higher than tree mortality rates, but species-level mortality rates of lianas were similar to trees with ‘fast’ life-history strategies and both growth forms exhibited similar spatial and size-dependent patterns. The mortality rates of liana saplings (<2.1 cm in diameter), which represent about 50% of liana individuals, decreased with increasing disturbance severity and remained consistently low during post-disturbance stand thinning. In contrast, larger liana individuals and trees of all sizes had elevated mortality rates in response to disturbance and their mortality rates decreased over time since disturbance. Within undisturbed forest patches, liana mortality rates increased with increasing soil fertility in a manner similar to trees. The distinct responses of liana saplings to disturbance appeared to distinguish liana mortality from that of trees, whereas similarities in their patterns of death suggest that there are common drivers of woody plant mortality. 
    more » « less
  7. Abstract The latitudinal diversity gradient (LDG) dominates global patterns of diversity1,2, but the factors that underlie the LDG remain elusive. Here we use a unique global dataset3to show that vascular plants on oceanic islands exhibit a weakened LDG and explore potential mechanisms for this effect. Our results show that traditional physical drivers of island biogeography4—namely area and isolation—contribute to the difference between island and mainland diversity at a given latitude (that is, the island species deficit), as smaller and more distant islands experience reduced colonization. However, plant species with mutualists are underrepresented on islands, and we find that this plant mutualism filter explains more variation in the island species deficit than abiotic factors. In particular, plant species that require animal pollinators or microbial mutualists such as arbuscular mycorrhizal fungi contribute disproportionately to the island species deficit near the Equator, with contributions decreasing with distance from the Equator. Plant mutualist filters on species richness are particularly strong at low absolute latitudes where mainland richness is highest, weakening the LDG of oceanic islands. These results provide empirical evidence that mutualisms, habitat heterogeneity and dispersal are key to the maintenance of high tropical plant diversity and mediate the biogeographic patterns of plant diversity on Earth. 
    more » « less
  8. Understanding how resource limitation and biotic interactions interact across spatial scales is fundamental to explaining the structure of ecological communities. However, empirical studies addressing this issue are often hindered by logistical constraints, especially at local scales. Here, we use a highly tractable arboreal ant study system to explore the interactive effects of resource availability and competition on community structure across three local scales: an individual tree, the nest network created by each colony and the individual ant nest. On individual trees, the ant assemblages are primarily shaped by availability of dead wood, a critical nesting resource. The nest networks within a tree are constrained by the availability of nesting resources but also influenced by the co-occurring species. Within individual nests, the distribution of adult ants is only affected by distance to interspecific competitors. These findings demonstrate that resource limitation exerts the strongest effects on diversity at higher levels of local ecological organization, transitioning to a stronger effect of species interactions at finer scales. Collectively, these results highlight that the process exerting the strongest influence on community structure is highly dependent on the scale at which we examine the community, with shifts occurring even across fine-grained local scales. 
    more » « less
  9. Dyer, Lee (Ed.)
    Abstract Lightning is a common agent of disturbance in many forest ecosystems. Lightning-damaged trees are a potentially important resource for beetles, but most evidence for this association is limited to temperate pine forests. Here, we evaluated the relationship between lightning damage and beetle colonization of tropical trees. We recorded the number of beetle holes on the trunks of trees from 10 strike sites (n = 173 lightning-damaged trees) and 10 matching control sites (n = 137 control trees) in Panama. The trunks of lightning-struck trees had 370% more beetle holes than control trees. The abundance of beetle holes increased with increasing total crown dieback among both control and lightning-damaged trees, and with larger tree diameter among lightning-struck trees. Beetle holes also were more abundant in trunk sections of lightning-damaged trees located directly below a damaged section of the crown. The results of this study suggest that lightning damage facilitates beetle colonization in tropical forest trees and provide a basis for investigations of the effects of lightning-caused disturbance on beetle population dynamics and assemblage structure. 
    more » « less