abstract: In recent years, ecological research has become increasingly synthetic, relying on revolutionary changes in data availability and accessibility. In spite of their strengths, these approaches may cause us to overlook natural history knowledge that is not part of the digitized English-language scientific record. Here, we combine historic and modern documents to quantify species-specific nesting habitat associations of bumblebees (Bombus spp. Latreille, 1802 Apidae). We compiled nest location data from 316 documents, of which 81 were non-English and 93 were published before 1950. We tested whether nesting traits show phylogenetic signal, examined relationships between habitat associations at different scales, and compared methodologies used to locate nests. We found no clear phylogenetic signals, but we found that nesting habitat associations were somewhat generalizable within subgenera. Landcover associations were related to nesting substrate associations; for example, surface-nesting species also tended to be associated with grasslands. Methodology was associated with nest locations; community scientists were most likely and researchers using nest boxes were least likely to report nests in human-dominated environments. These patterns were not apparent in past syntheses based only on the modern digital record. Our findings highlight the tremendous value of historic accounts for quantifying species’ traits and other basic biological knowledge needed to interpret global-scale patterns.
more »
« less
Competition and habitat availability interact to structure arboreal ant communities across scales of ecological organization
Understanding how resource limitation and biotic interactions interact across spatial scales is fundamental to explaining the structure of ecological communities. However, empirical studies addressing this issue are often hindered by logistical constraints, especially at local scales. Here, we use a highly tractable arboreal ant study system to explore the interactive effects of resource availability and competition on community structure across three local scales: an individual tree, the nest network created by each colony and the individual ant nest. On individual trees, the ant assemblages are primarily shaped by availability of dead wood, a critical nesting resource. The nest networks within a tree are constrained by the availability of nesting resources but also influenced by the co-occurring species. Within individual nests, the distribution of adult ants is only affected by distance to interspecific competitors. These findings demonstrate that resource limitation exerts the strongest effects on diversity at higher levels of local ecological organization, transitioning to a stronger effect of species interactions at finer scales. Collectively, these results highlight that the process exerting the strongest influence on community structure is highly dependent on the scale at which we examine the community, with shifts occurring even across fine-grained local scales.
more »
« less
- PAR ID:
- 10510805
- Publisher / Repository:
- Royal Society Publishing
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 290
- Issue:
- 2007
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Species displaying temperature-dependent sex determination (TSD) are especially vulnerable to the effects of a rapidly changing global climate due to their profound sensitivity to thermal cues during development. Predicting the consequences of climate change for these species, including skewed offspring sex ratios, depends on understanding how climatic factors interface with features of maternal nesting behaviour to shape the developmental environment. Here, we measure thermal profiles in 86 nests at two geographically distinct sites in the northern and southern regions of the American alligator's ( Alligator mississippiensis ) geographical range, and examine the influence of both climatic factors and maternally driven nest characteristics on nest temperature variation. Changes in daily maximum air temperatures drive annual trends in nest temperatures, while variation in individual nest temperatures is also related to local habitat factors and microclimate characteristics. Without any compensatory nesting behaviours, nest temperatures are projected to increase by 1.6–3.7°C by the year 2100, and these changes are predicted to have dramatic consequences for offspring sex ratios. Exact sex ratio outcomes vary widely depending on site and emission scenario as a function of the unique temperature-by-sex reaction norm exhibited by all crocodilians. By revealing the ecological drivers of nest temperature variation in the American alligator, this study provides important insights into the potential consequences of climate change for crocodilian species, many of which are already threatened by extinction.more » « less
-
Protecting diverse solitary ground-nesting bees remains a pivotal conservation concern. Ground-nesting bees are negatively impacted by anthropogenic land use change that often removes suitable nesting habitat from the landscape. Despite their enormous ecological and agricultural contributions to pollination, solitary, ground-nesting bees are often neglected, partly due to the significant obstacle of discovering exactly where these bees establish their nests. To address this limitation, we have developed a ‘community science’ project to map aggregations of ground-nesting bees globally. In certain locations, their abundances reach astounding levels, sometimes in the millions, but are scarcely known. Utilizing the iNaturalist platform, which permits geo-referencing of site observations and bee identification, we are providing public education and seeking public engagement to document bee aggregations in order to understand the nesting requirements of diverse species and open new opportunities for their conservation. Conservation priorities may then unequivocally be directed to areas of high species richness, nest densities, and nesting sites of rare bees. Such community-led efforts are vital for successful long-term management of native bees and the biotic and abiotic landscape data from nest-site localities can allow modeling to predict nest-site suitability and to readily test such predictions on the ground. Here, we summarize the progress, current limitations, and opportunities of using a global mapping project (GNBee) to direct conservation efforts and research toward solitary ground-nesting bees.more » « less
-
Abstract Climate change, including directional shifts in weather averages and extremes and increased interannual weather variation, is influencing demography and distributions for many bird species. The Ouachita Mountains ecoregion in southeast Oklahoma and west-central Arkansas contains 2 populations of the Red-cockaded Woodpecker (Dryobates borealis, RCW), a federally endangered, cooperatively breeding species. Since this region is at the RCW’s northwestern range periphery, ecological thresholds likely are limiting for the species. Therefore, populations in this region may be more sensitive to climate change-associated weather variation and unpredictability. We used 26 years of nesting data (1991–2016) from the 2 RCW populations to determine if interannual weather variation has affected nesting phenology and productivity. For each population, we used daily temperature and precipitation data for 3 periods (30 and 60 days before nesting; 40 days overlapping the nesting period) to determine how weather influences median nesting date and average clutch size and numbers of fledglings. In a separate analysis, we used shorter time windows with individual nests as replicates to determine how discrete weather events (e.g., minimum and maximum temperatures and intense precipitation events) affect nest success and partial brood loss. For both Oklahoma and Arkansas populations, warmer early spring temperatures generally advanced nesting and increased clutch size and fledgling number. However, the effects of average precipitation varied depending on the amount and duration of precipitation in different time periods. At the nest level, most variables reflecting discrete temperature and precipitation events were unrelated to nest success and brood loss, suggesting that factors other than weather (e.g., habitat quality and predation) more strongly influenced the nesting output of individual RCW broods. Our results indicate RCWs are responding to interannual weather variation in complex and variable ways. However, warming trends may generally be having positive effects on the species at the northwestern edge of its range.more » « less
-
Abstract The structure of local ecological communities is thought to be determined by a series of hierarchical abiotic and biotic filters which select for or against species based on their traits. Many human impacts, like fragmentation, serve to alter environmental conditions across a range of spatial scales and may impact trait–environment interactions.We examined the effects of environmental variation associated with habitat fragmentation of seagrass habitat measured from microhabitat to landscape scales in controlling the taxonomic and trait‐based community structure of benthic fauna.We measured patterns in species abundance and biomass of seagrass epifauna and infauna sampled using sediment cores from 86 sites (across 21 meadows) in Back Sound, North Carolina, USA. We related local faunal community structure to environmental variation measured at three spatial scales (microhabitat, patch and landscape). Additionally, we tested the value of species traits in predicting species‐specific responses to habitat fragmentation across scales.While univariate measures of faunal communities (i.e. total density, biomass and species richness) were positively related to microhabitat‐scale seagrass biomass only, overall community structure was predicted by environmental variation at the microhabitat, patch (i.e. patch size) and landscape (i.e. number of patches, landscape seagrass area) scales. Furthermore, fourth‐corner analysis revealed that species traits explained as much variation in organismal densities as species identity. For example, species with planktonic‐dispersing larvae and deposit‐feeding trophic modes were more abundant in contiguous, high seagrass cover landscapes while suspension feeders favoured more fragmented landscapes.We present quantitative evidence supporting hierarchal models of community assembly which predict that interactions between species traits and environmental variation across scales ultimately drive local community composition. Variable responses of individual traits to multiple environmental variables suggest that community assembly processes that act on species via traits related to dispersal, mobility and trophic mode will be altered under habitat fragmentation. Additionally, with increasing global temperatures, the tropical seagrassHalodule wrightiiis predicted to replace the temperateZostera marinaas the dominate seagrass in our study region, therefore potentially favouring species with planktonic‐dispersing larva and weakening the strength of environmental control on community assembly.more » « less
An official website of the United States government

