skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gordon, Deborah M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Colonies of the arboreal turtle ant create networks of trails that link nests and food sources on the graph formed by branches and vines in the canopy of the tropical forest. Ants put down a volatile pheromone on the edges as they traverse them. At each vertex, the next edge to traverse is chosen using a decision rule based on the current pheromone level. There is a bidirectional flow of ants around the network. In a previous field study, it was observed that the trail networks approximately minimize the number of vertices, thus solving a variant of the popular shortest path problem without any central control and with minimal computational resources. We propose a biologically plausible model, based on a variant of the reinforced random walk on a graph, which explains this observation and suggests surprising algorithms for the shortest path problem and its variants. Through simulations and analysis, we show that when the rate of flow of ants does not change, the dynamics converges to the path with the minimum number of vertices, as observed in the field. The dynamics converges to the shortest path when the rate of flow increases with time, so the colony can solve the shortest path problem merely by increasing the flow rate. We also show that to guarantee convergence to the shortest path, bidirectional flow and a decision rule dividing the flow in proportion to the pheromone level are necessary, but convergence to approximately short paths is possible with other decision rules. 
    more » « less
  2. Changing climatic conditions are shaping how density mediates resource competition. Colonies of the seed-eating red harvester ant, Pogonomyrmex barbatus, live for about 30 years in desert grassland. They compete with con- specific neighbors for foraging area in which to search for seeds. This study draws on a long-term census of a population of about 300 colonies from 1988 to 2019 at a site near Rodeo, New Mexico, USA. Rainfall was high in the first decade of the study, and then declined as a severe drought began in about 2001–2003. We examine the effects on colony survival and recruitment of the spatial configuration of the local neighborhood of conspecific neighbors, using Voronoi polygons as a measure of a colony’s foraging area, and consider how changing rainfall influences the effects of local neighborhoods. The results show that a colony’s chances of surviving to the next year depend on its age and on the foraging area available in its local neighborhood. Recruitment, measured as a founding colony’s chance of surviving to be 1 year old, depends on rainfall. In the earlier years of the study, when rainfall was high, colony numbers increased, and then began to decline after about 1997–1999, appar- ently due to crowding. As rainfall decreased, beginning in about 2001–2003, recruitment declined, and so did colony survival, leading to a trend toward earlier colony death which was most pronounced in 2016. As rainfall declined, apparently decreasing food availability, more foraging area was needed to sus- tain a colony: although the number of colonies declined, the impact of crowding by intraspecific neighbors increased. These processes maintain over- dispersion on the scale of about 8 m, with transient clustering at larger spatial scales. In addition, other factors besides crowding, such as the colony’s regula- tion of foraging activity to manage water loss, appear to contribute to a col- ony’s survival. The adaptive capacity for selection on the collective behavior that regulates foraging activity may determine how the population responds to ongoing climate change and drought. 
    more » « less
  3. Differences among groups in collective behavior may arise from responses that all group members share, or instead from differences in the distribution of individuals of particular types. We examined whether the collective regulation of foraging behavior in colonies of the desert red harvester ant ( Pogonomyrmex barbatus ) depends on individual differences among foragers. Foragers lose water while searching for seeds in hot, dry conditions, so colonies regulate foraging activity in response to humidity. In the summer, foraging activity begins in the early morning when humidity is high, and ends at midday when humidity is low. We investigated whether individual foragers within a colony differ in the decision whether to leave the nest on their next foraging trip as humidity decreases, by tracking the foraging trips of marked individuals. We found that individuals did not differ in response to current humidity. No ants were consistently more likely than others to stop foraging when humidity is low. Each day there is a skewed distribution of trip number: only a few individuals make many trips, but most individuals make few trips. We found that from one day to the next, individual foragers do not show any consistent tendency to make a similar number of trips. These results suggest that the differences among colonies in response to humidity, found in previous work, are due to behavioral responses to current humidity that all workers in a colony share, rather than to the distribution within a colony of foragers that differ in response. 
    more » « less
  4. Creating a routing backbone is a fundamental problem in both biology and engineering. The routing backbone of the trail networks of arboreal turtle ants (Cephalotes goniodontus) connects many nests and food sources using trail pheromone deposited by ants as they walk. Unlike species that forage on the ground, the trail networks of arboreal ants are constrained by the vegetation. We examined what objectives the trail networks meet by comparing the observed ant trail networks with networks of random, hypothetical trail networks in the same surrounding vegetation and with trails optimized for four objectives: minimizing path length, minimizing average edge length, minimizing number of nodes, and minimizing opportunities to get lost. The ants’ trails minimized path length by minimizing the number of nodes traversed rather than choosing short edges. In addition, the ants’ trails reduced the opportunity for ants to get lost at each node, favoring nodes with 3D configurations most likely to be reinforced by pheromone. Thus, rather than finding the shortest edges, turtle ant trail networks take advantage of natural variation in the environment to favor coherence, keeping the ants together on the trails. 
    more » « less
  5. null (Ed.)
    We introduce a model for ant trail formation, building upon previous work on biologically feasible local algorithms that plausibly describe how ants maintain trail networks. The model is a variant of a reinforced random walk on a directed graph, where ants lay pheromone on edges as they traverse them and the next edge to traverse is chosen based on the level of pheromone; this pheromone decays with time. There is a bidirectional flow of ants in the network: the forward flow proceeds along forward edges from source (e.g. the nest) to sink (e.g. a food source), and the backward flow in the opposite direction. Some fraction of ants are lost as they pass through each node (modeling the loss of ants due to exploration observed in the field). We initiate a theoretical study of this model. We note that ant navigation has inspired the field of ant colony optimization, heuristics that have been applied to several combinatorial optimization problems; however the algorithms developed there are considerably more complex and not constrained to being biologically feasible. We first consider the linear decision rule, where the flow divides itself among the next set of edges in proportion to their pheromone level. Here, we show that the process converges to the path with minimum leakage when the forward and backward flows do not change over time. On the other hand, when the forward and backward flows increase over time (caused by positive reinforcement from the discovery of a food source, for example), we show that the process converges to the shortest path. These results are for graphs consisting of two parallel paths (a case that has been investigated before in experiments). Through simulations, we show that these results hold for more general graphs drawn from various random graph models; proving this convergence in the general case is an interesting open problem. Further, to understand the behaviour of other decision rules beyond the linear rule, we consider a general family of decision rules. For this family, we show that there is no advantage of using a non-linear decision rule, if the goal is to find the shortest or the minimum leakage path. We also show that bidirectional flow is necessary for convergence to such paths. Our results provide a plausible explanation for field observations, and open up new avenues for further theoretical and experimental investigation. 
    more » « less
  6. The collective intelligence of online communities often depends on implicit forms of coordination, given the fluidity of membership and the lack of traditional hierarchies and associated incentive structures. This coordination drives knowledge production. Studying temporal dynamics may help elucidate how coordination happens. Specifically, the rate of interaction with an artifact such as a Wikipedia page can function as a signal that affects future interactions. Many activities can be characterized as bursty, meaning activity is not evenly spread or random, but is instead concentrated. This study analyzes 3,260 Wikipedia articles and shows that the coordination pattern in the Wikipedia community is mostly bursty. More importantly, the extent of burstiness affects article quality. This work highlights the important role temporal dynamics can play in the coordination process in online communities, and how it can affect the quality of knowledge production. 
    more » « less