skip to main content


Title: Rainfall, neighbors, and foraging: The dynamics of a population of red harvester ant colonies 1988–2019
Changing climatic conditions are shaping how density mediates resource competition. Colonies of the seed-eating red harvester ant, Pogonomyrmex barbatus, live for about 30 years in desert grassland. They compete with con- specific neighbors for foraging area in which to search for seeds. This study draws on a long-term census of a population of about 300 colonies from 1988 to 2019 at a site near Rodeo, New Mexico, USA. Rainfall was high in the first decade of the study, and then declined as a severe drought began in about 2001–2003. We examine the effects on colony survival and recruitment of the spatial configuration of the local neighborhood of conspecific neighbors, using Voronoi polygons as a measure of a colony’s foraging area, and consider how changing rainfall influences the effects of local neighborhoods. The results show that a colony’s chances of surviving to the next year depend on its age and on the foraging area available in its local neighborhood. Recruitment, measured as a founding colony’s chance of surviving to be 1 year old, depends on rainfall. In the earlier years of the study, when rainfall was high, colony numbers increased, and then began to decline after about 1997–1999, appar- ently due to crowding. As rainfall decreased, beginning in about 2001–2003, recruitment declined, and so did colony survival, leading to a trend toward earlier colony death which was most pronounced in 2016. As rainfall declined, apparently decreasing food availability, more foraging area was needed to sus- tain a colony: although the number of colonies declined, the impact of crowding by intraspecific neighbors increased. These processes maintain over- dispersion on the scale of about 8 m, with transient clustering at larger spatial scales. In addition, other factors besides crowding, such as the colony’s regula- tion of foraging activity to manage water loss, appear to contribute to a col- ony’s survival. The adaptive capacity for selection on the collective behavior that regulates foraging activity may determine how the population responds to ongoing climate change and drought.  more » « less
Award ID(s):
1940647
PAR ID:
10316491
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Ecological Monographs
ISSN:
0012-9615
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Predicting drought responses of individual trees in tropical forests remains challenging, in part because trees experience drought differently depending on their position in spatially heterogeneous environments. Specifically, topography and the competitive environment can influence the severity of water stress experienced by individual trees, leading to individual-level variation in drought impacts. A drought in 2015 in Puerto Rico provided the opportunity to assess how drought response varies with topography and neighborhood crowding in a tropical forest. In this study, we integrated 3 years of annual census data from the El Yunque Chronosequence plots with measurements of functional traits and LiDAR-derived metrics of microsite topography. We fit hierarchical Bayesian models to examine how drought, microtopography, and neighborhood crowding influence individual tree growth and survival, and the role functional traits play in mediating species’ responses to these drivers. We found that while growth was lower during the drought year, drought had no effect on survival, suggesting that these forests are fairly resilient to a single-year drought. However, growth response to drought, as well as average growth and survival, varied with topography: tree growth in valley-like microsites was more negatively affected by drought, and survival was lower on steeper slopes while growth was higher in valleys. Neighborhood crowding reduced growth and increased survival, but these effects did not vary between drought/non-drought years. Functional traits provided some insight into mechanisms by which drought and topography affected growth and survival. For example, trees with high specific leaf area grew more slowly on steeper slopes, and high wood density trees were less sensitive to drought. However, the relationships between functional traits and response to drought and topography were weak overall. Species sorting across microtopography may drive observed relationships between average performance, drought response, and topography. Our results suggest that understanding species’ responses to drought requires consideration of the microenvironments in which they grow. Complex interactions between regional climate, topography, and traits underlie individual and species variation in drought response. 
    more » « less
  2. Abstract Questions

    We asked: (a) whether the strength of conspecific and heterospecific neighborhood crowding effects on focal tree survival and growth vary with neighborhood radii; and (b) if the relative strength of the effect of neighborhood interactions on tree growth and survival varies with neighborhood scale.

    Location

    Luquillo Forest Dynamics Plot, Puerto Rico.

    Methods

    We used tree survival and growth data and included information on species‐mean trait values related to several leaf traits, maximum height, seed mass and wood density. We incorporated a tree neighborhood modeling approach that uses an area around a focal tree with a specified radius, to describe the interactions between a focal tree and its neighbors. We constructed survival and growth models for each functional trait using a Bayesian approach, and varied the size of the radius from 5 m to 30 m, at 5‐m intervals.

    Results

    The results suggested that the estimated effects of conspecific and heterospecific neighbors on tree performance do not vary based on the size of the neighborhood (5–30 m), suggesting that the effects of conspecific and heterospecific neighbors on the performance of a focal tree likely do not vary substantially beyond a neighborhood radius of 5 m in the Luquillo forest. In contrast, the estimated strength of the functional neighborhood (effect of neighbors based on their functional trait values) on tree performance was dependent on the neighborhood range. Our results also suggested that the effects of trait distances and trait hierarchies on tree survival and growth are acting simultaneously and at the same spatial scales.

    Conclusion

    Findings from this study highlight the importance of spatial scale in community assembly processes, and specifically, call for increased attention when selecting the radius that defines the neighborhood around a focal tree as the selected neighborhood radius influences the community patterns discovered, and affects the conclusions about the drivers that control community assembly.

     
    more » « less
  3. Abstract

    Among social insects, colony‐level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of theforaginggene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire antforaginggene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony‐level behavioural variation. Colonies with highersiforexpression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression ofsiforwas also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of theforaginggene may provide an important tool for understanding and predicting the ecological consequences of colony‐level behavioural variation.

     
    more » « less
  4. Abstract

    Animals that feed socially can sometimes better locate prey, often by transferring information about food that is patchy, dense, and temporally and spatially unpredictable. Information transfer is a potential benefit of living in breeding colonies where unsuccessful foragers can more readily locate successful ones and thereby improve feeding efficiency. Most studies on social foraging have been short term, and how long‐term environmental change affects both foraging strategies and the associated benefits of coloniality is generally unknown. In the colonial Cliff Swallow (Petrochelidon pyrrhonota), we examined how social foraging, information transfer, and feeding ecology changed over a 40‐year period in western Nebraska. Relative to the 1980s, Cliff Swallows in 2016–2022 were more likely to forage solitarily or in smaller groups, spent less time foraging, were more successful as solitaries, fed in more variable locations, and engaged less in information transfer at the colony site. The total mass of insects brought back to nestlings per parental visit declined over the study. The diversity of insect families captured increased over time, and some insect taxa dropped out of the diet, although the three most common insect families remained the same over the decades. Nestling Cliff Swallow body mass at 10 days of age and the number of nestlings surviving per nest declined more sharply with colony size in 2015–2022 than in 1984–1991 at sites where the confounding effects of ectoparasites were removed. Adult body mass during the provisioning of nestlings was lower in more recent years, but the change did not vary with colony size. The reason(s) for the reduction in social foraging and information transfer over time is unclear, but the consequence is that colonial nesting may no longer offer the same fitness advantages for Cliff Swallows as in the 1980s. The results illustrate the flexibility of foraging behavior and dynamic shifts in the potential selective pressures for group living.

     
    more » « less
  5. Background Among species with size structured demography, population structure is determined by size specific survival and growth rates. This interplay is particularly important among recently settled colonial invertebrates for which survival is low and growth is the only way of escaping the high mortality that small colonies are subject to. Gorgonian corals settling on reefs can grow into colonies of millions of polyps and can be meters tall. However, all colonies start their benthic lives as single polyps, which are subject to high mortality rates. Annual survival among these species increases with size, reflecting the ability of colonies to increasingly survive partial mortality as they grow larger. Methods Data on survival and growth of gorgonian recruits in the genera Eunicea and Pseudoplexaura at two sites on the southern coast of St John, US Virgin Islands were used to generate a stage structured model that characterizes growth of recruits from 0.3 cm until they reach 5 cm height. The model used the frequency distributions of colony growth rates to incorporate variability into the model. Results High probabilities of zero and negative growth increase the time necessary to reach 5 cm and extends the demographic bottleneck caused by high mortality to multiple years. Only 5% of the recruits in the model survived and reached 5 cm height and, on average, recruits required 3 y to reach 5 cm height. Field measurements of recruitment rates often use colony height to differentiate recruits from older colonies, but height cannot unambiguously identify recruits due to the highly variable nature of colony growth. Our model shows how recruitment rates based on height average recruitment and survival across more than a single year, but size-based definitions of recruitment if consistently used can characterize the role of supply and early survival in the population dynamics of species. 
    more » « less