skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goren, Liran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Drainage divide migration alters the geometry of drainage basins, influencing the distribution of water, erosion, sediments, and ecosystems across Earth’s surface. The rate of divide migration is governed by differences in erosion rates across the divide and is thus sensitive to spatiotemporal variations in tectonics and climate. However, established approaches for quantifying divide migration rates offer only indirect evidence for the motion of the divide and provide only migration rate averages. Consequently, transience in divide migration cannot be resolved, hindering the ability to explore environmental changes that drive the dynamics of such potential transience. Here, we study a set of datable terraces identified as markers of paleo-divide locations, which provide direct evidence for the paleo motion of the divide. The location and age of the terraces reveal intermittent divide migration at timescales of 104to 105y, with phases of rapid migration—at rates more than twice the average—which coincide with documented regional paleoclimate fluctuations. These findings highlight the intermittent nature of divide migration dynamics over geomorphic timescales and its potential sensitivity to climate changes, underscoring the impact of such changes on the planform evolution of drainage basins. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  2. Abstract. The planform geometry of branching drainage networks controls the topography of landscapes and their geomorphic, hydrologic, and ecologic functionality. The complexity of networks' geometry shows significant variability, from simple, straight channels that flow along the regional topographic gradient to intricate, tortuous flow patterns. This variability in complexity presents an enigma, as models show that it emerges independently of any heterogeneity in the environmental conditions. We propose to quantify networks' complexity based on the distribution of lengthwise asymmetry between paired flow pathways that diverge from a divide and rejoin at a junction. Using the lengthwise asymmetry definition, we show that the channel concavity index, describing downstream changes in channel slope, has a primary control on the planform complexity of natural drainage networks. An analytic model and optimal channel network simulations employing an energy minimization principle reveal that landscapes with low concavity channels attain planform stability only with simple network geometry. In contrast, landscapes with high concavity channels can achieve planform stability with various configurations, displaying different degrees of network complexity, including extremely complex geometries. Consequently, landscapes with high concavity index channels can preserve the legacy of former environmental conditions, whereas landscapes with low concavity index channels reorganize in response to environmental changes, erasing the former conditions. Consistent with previous findings showing that channel concavity correlates with climate aridity, we find a significant empirical correlation between aridity and network complexity, suggesting a climatic signature embedded in the large-scale planform geometry of landscapes. 
    more » « less
  3. Abstract Escarpments and cliffs (hereafter termed escarpments) form topographic barriers that influence the spatial patterns of climate and biodiversity. The inherent extreme slope change across the escarpment edge promotes escarpment retreat over time. Typically, escarpments are divided into arch‐ and shoulder‐types. In arch‐type, the drainage divide is located inland, and knickpoints, located where channels flow across the escarpment, can retreat and embay the escarpment. In shoulder‐type, the divide aligns with the escarpment edge, a setting expected to cause a slow and uniform escarpment retreat, preserving their integrity as barriers through time. However, observations from around the globe reveal shoulder‐type escarpments are associated with deep embayments (i.e., alcoves) that destroy the linear appearance of the escarpment front. Yet, the processes that produce and sustain these embayments remain largely unexplored. Embayments of shoulder‐type escarpments typically occur along reversed channels which were part of the antecedent drainage that used to flow away from the escarpment but now flow toward it, often resulting in a valley confined drainage divide called a windgap. Here, we hypothesize that feedback between knickpoint retreat and windgap migration away from the escarpment along reversed channels can sustain escarpment embayments, and use topographic analyses and numerical simulations to explore this hypothesis. Our analyses, focused on field sites in the Negev Desert, show that embayments of shoulder‐type escarpments can be sustained through the hypothesized feedback, and quantify the sensitivity of this feedback to geomorphologic and lithologic parameters. Results suggest that this feedback may explain some of the global variability of escarpment morphologies. 
    more » « less
  4. Abstract. The width of valleys and channels affects the hydrology, ecology,and geomorphic functionality of drainage networks. In many studies, thewidth of valleys and/or channels (W) is estimated as a power-law function ofthe drainage area (A), W=kcAd. However, in fluvial systemsthat experience drainage reorganization, abrupt changes in drainage areadistribution can result in valley or channel widths that are disproportionalto their drainage areas. Such disproportionality may be more distinguishedin valleys than in channels due to a longer adjustment timescale forvalleys. Therefore, the valley width–area scaling in reorganized drainagesis expected to deviate from that of drainages that did not experiencereorganization. To explore the effect of reorganization on valley width–drainage areascaling, we studied 12 valley sections in the Negev desert, Israel,categorized into undisturbed, beheaded, and reversed valleys. We found thatthe values of the drainage area exponents, d, are lower in the beheadedvalleys relative to undisturbed valleys but remain positive. Reversedvalleys, in contrast, are characterized by negative d exponents, indicatingvalley narrowing with increasing drainage area. In the reversed category, wealso explored the independent effect of channel slope (S) through theequation W=kbAbSc, which yieldednegative and overall similar values for b and c. A detailed study in one reversed valley section shows that the valleynarrows downstream, whereas the channel widens, suggesting that, ashypothesized, the channel width adjusts faster to post-reorganizationdrainage area distribution. The adjusted narrow channel dictates the widthof formative flows in the reversed valley, which contrasts with the meaningfullywider formative flows of the beheaded valley across the divide. Thisdifference results in a step change in the unit stream power between thereversed and beheaded channels, potentially leading to a “width feedback”that promotes ongoing divide migration and reorganization. Our findings demonstrate that valley width–area scaling is a potential toolfor identifying landscapes influenced by drainage reorganization. Accountingfor reorganization-specific scaling can improve estimations of erosion ratedistributions in reorganized landscapes. 
    more » « less
  5. Abstract. The location of drainage divides sets the distribution of discharge, erosion, and sediment flux between neighboring basins and may shift through time in response to changing tectonic and climatic conditions. Major divides commonly coincide with ridgelines, where the drainage area is small and increases gradually downstream. In such settings, divide migration is attributed to slope imbalance across the divide that induces erosion rate gradients. However, in some tectonically affected regions, low-relief divides, which are also called wind gaps, abound in elongated valleys whose drainage area distribution is set by the topology of large, potentially avulsing side tributaries. In this geometry, distinct dynamics and rates of along-valley wind-gap migration are expected, but this process remains largely unexplored. Inspired by field observations, we investigate along-valley wind-gap migration by simulating the evolution of synthetic and natural landscapes, and we show that confluences with large side tributaries influence migration rate and extent. Such confluences facilitate stable wind-gap locations that deviate from intuitive expectations based on symmetry considerations. Avulsions of side tributaries can perturb stable wind-gap positions, and avulsion frequency governs the velocity of wind-gap migration. Overall, our results suggest that tributaries and their avulsions may play a critical role in setting the rate and extent of wind-gap migration along valleys and thus the timescale of landscape adjustment to tectonic and climatic changes across some of the tectonically most affected regions of Earth, where wind gaps are common. 
    more » « less
  6. null (Ed.)
    Abstract Rapid ice loss is facilitated by sliding over beds consisting of reworked sediments and erosional products, commonly referred to as till. The dynamic interplay between ice and till reshapes the bed, creating landforms preserved from past glaciations. Leveraging the imprint left by past glaciations as constraints for projecting future deglaciation is hindered by our incomplete understanding of evolving basal slip. Here, we develop a continuum model of water-saturated, cohesive till to quantify the interplay between meltwater percolation and till mobilization that governs changes in the depth of basal slip under fast-moving ice. Our model explains the puzzling variability of observed slip depths by relating localized till deformation to perturbations in pore-water pressure. It demonstrates that variable slip depth is an inherent property of the ice-meltwater-till system, which could help understand why some paleo-landforms like grounding-zone wedges appear to have formed quickly relative to current till-transport rates. 
    more » « less