skip to main content

Search for: All records

Creators/Authors contains: "Govindarajulu, Sandhiya Reddy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a single-fed, single-layer, dual-band antenna with a large frequency ratio of 4.74:1 for vehicle-to-vehicle communication. The antenna consists of a 28 GHz inset-fed rectangular patch embedded into a 5.9 GHz patch antenna for dual-band operation. The designed dual-band antenna operates from 5.81 to 5.99 GHz (Dedicated Short Range Communications, DSRC) and 27.9 to 30.1 GHz (5G millimeter-wave (mm-wave) band). Furthermore, the upper band patch was modified by inserting slots near the inset feed line to achieve an instantaneous bandwidth of 4.5 GHz. The antenna was fabricated and measured. The manufactured prototype operates simultaneously from 5.8 to 6.05 GHz and from 26.8 to 31.3 GHz. Notably, the designed dual-band antenna offers a high peak gain of 7.7 dBi in the DSRC band and 6.38 dBi in the 5G mm-wave band.

    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. null (Ed.)
    The Dedicated Short Range Communications (DSRC) band (5.85-5.925 GHz) allocated for vehicle-to-vehicle (V2V) communication provides limited opportunities for high speed data transfer. Alternatively, FCC plans to allocate millimeter-wave spectrum for 5G V2V communication. In this paper, we present a novel dual-band dual linearly-polarized antenna array for both DSRC and 28 GHz communications. For each band, we optimized antenna gain and number of elements to maximize range and data rate. The designed array has dual linear polarization and is fed with a simple quarter wave transformer. Due to large available connector’s size, a Wilkinson power divider is designed to combine adjacent elements. Infinite array simulation show that the array is well matched (S11 < -10 dB) from 5.85 to 6.48 GHz, and from 17.29 to 29 GHz. The realized gain at both frequency bands is neartheoretical. 
    more » « less