skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Graffin, Marcan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding waterline variability at seasonal to interannual timescales is crucial for predicting coastal responses to climate forcing. However, relationships between large-scale climate variability and coastal morphodynamics remain underexplored beyond intensively monitored sites. This study leverages a newly developed 25-year (1997–2022) satellite-derived waterline dataset along the North American West Coast. Our results reveal distinct latitudinal patterns in seasonal waterline change, with excursions exceeding 25 m in the Pacific Northwest, decreasing to less than 10 m in Southern California and farther south. Waterline fluctuations strongly follow wave power in the Pacific Northwest (R = −0.78), northern California (R = −0.75), and Baja California (R = −0.62), while Baja California Sur aligns more with sea-level variations (R = −0.42). Interannually, waterline change exhibits latitudinal dependence: south of southern California, variability is low, with major erosion confined to strong El Niño-Southern Oscillation (ENSO) events, while northern regions show mixed responses. ENSO-driven storm track shifts modulate winter wave climate, resulting in enhanced (attenuated) erosion from southern California to Baja California Sur during El Niño (La Niña). However, further north, ENSO impacts are less consistent, reflecting a complex interplay of storm track displacement and intensification. These findings highlight the spatial complexity of ENSO-driven morphodynamics and provide a framework for assessing climate-induced coastal vulnerability. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract Coastal zones are fragile and complex dynamical systems that are increasingly under threat from the combined effects of anthropogenic pressure and climate change. Using global satellite derived shoreline positions from 1993 to 2019 and a variety of reanalysis products, here we show that shorelines are under the influence of three main drivers: sea-level, ocean waves and river discharge. While sea level directly affects coastal mobility, waves affect both erosion/accretion and total water levels, and rivers affect coastal sediment budgets and salinity-induced water levels. By deriving a conceptual global model that accounts for the influence of dominant modes of climate variability on these drivers, we show that interannual shoreline changes are largely driven by different ENSO regimes and their complex inter-basin teleconnections. Our results provide a new framework for understanding and predicting climate-induced coastal hazards. 
    more » « less
  3. Abstract Coastal morphological changes can be assessed using shoreline position observations from space. However, satellite-derived waterline (SDW) and shoreline (SDS; SDW corrected for hydrodynamic contributions and outliers) detection methods are subject to several sources of uncertainty and inaccuracy. We extracted high-spatiotemporal-resolution (~50 m-monthly) time series of mean high water shoreline position along the Columbia River Littoral Cell (CRLC), located on the US Pacific Northwest coast, from Landsat missions (1984–2021). We examined the accuracy of the SDS time series along the mesotidal, mildly sloping, high-energy wave climate and dissipative beaches of the CRLC by validating them against 20 years of quarterlyin situbeach elevation profiles. We found that the accuracy of the SDS time series heavily depends on the capability to identify and remove outliers and correct the biases stemming from tides and wave runup. However, we show that only correcting the SDW data for outliers is sufficient to accurately measure shoreline change trends along the CRLC. Ultimately, the SDS change trends show strong agreement within situdata, facilitating the spatiotemporal analysis of coastal change and highlighting an overall accretion signal along the CRLC during the past four decades. 
    more » « less