skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Graham, Carolyn_D K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The processes driving defense trait correlations may vary within and between species based on ecological or environmental contexts. However, most studies of plant defense theory fail to address this potential for shifts in trait correlations across scales. In this work, we tested for correlations between multiple defensive traits (secondary chemistry, carbon to nitrogen ratio, domatia, leaf toughness, trichomes, and pearl bodies) across a common garden of 21Vitisspecies and eighteen genotypes of the speciesVitis ripariato identify when and where patterns of defense trait evolution persist or break down across biological scales. Additionally, we asked whetherVitisdefense trait investment correlates with environmental variables as predicted by plant defense theory, using environmental metrics for eachVitisspecies andV. ripariagenotype from the GBIF and WorldClim databases. We tested for correlations between defense trait investment, herbivore palatability, and environmental variables using phylogenetically informed models. Beyond a few likely physiological exceptions, we observed a lack of significant correlations between defense traits at both intra‐ and interspecific scales, indicating that these traits evolve independently of each other inVitisrather than forming predictable defense syndromes. We did find that investment in carbon:nitrogen (at both scales) and pearl bodies increases with proximity to the equator, demonstrating support for plant defense theory's prediction of higher investment in defenses at more equatorial environments for some, but not all, defense traits. Overall, our results challenge commonly held hypotheses about plant defense evolution, namely the concept of syndromes, by demonstrating that strong correlations between defense traits are not the prevailing pattern both across and withinVitisspecies. Our work also provides the first comprehensive evaluation of the evolutionary divergence in approaches thatVitis, a genus with significant agricultural value, have evolved to defend themselves against herbivores. 
    more » « less
    Free, publicly-accessible full text available May 14, 2026