skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Graur, O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Near-infrared (NIR) observations of normal Type Ia supernovae (SNe Ia) obtained between 150 and 500 d past maximum light reveal the existence of an extended plateau. Here, we present observations of the underluminous, 1991bg-like SN 2021qvv. Early, ground-based optical and NIR observations show that SN 2021qvv is similar to SN 2006mr, making it one of the dimmest, fastest evolving 1991bg-like SNe to date. Late-time (170–250 d) Hubble Space Telescope observations of SN 2021qvv reveal no sign of a plateau. An extrapolation of these observations backwards to earlier-phase NIR observations of SN 2006mr suggests the complete absence of an NIR plateau, at least out to 250 d. This absence may be due to a higher ionization state of the ejecta, as predicted by certain sub-Chandrasekhar-mass detonation models, or to the lower temperatures of the ejecta of 1991bg-like SNe, relative to normal SNe Ia, which might preclude their becoming fluorescent and shifting ultraviolet light into the NIR. This suggestion can be tested by acquiring NIR imaging of a sample of 1991bg-like SNe that covers the entire range from slowly evolving to fast-evolving events (0.2 ≲ sBV ≲ 0.6). A detection of the NIR plateau in slower evolving, hotter 1991bg-like SNe would provide further evidence that these SNe exist along a continuum with normal SNe Ia. Theoretical progenitor and explosion scenarios would then have to match the observed properties of both SN Ia subtypes. 
    more » « less
  2. Abstract We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are σ Ω M , stat + sys Λ CDM = 0.017 in a flat ΛCDM model, and ( σ Ω M , σ w ) stat + sys w CDM = (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time. 
    more » « less
  3. ABSTRACT We present an in-depth study of the late-time near-infrared plateau in Type Ia supernovae (SNe Ia), which occurs between 70 and 500 d. We double the existing sample of SNe Ia observed during the late-time near-infrared plateau with new observations taken with the Hubble Space Telescope, Gemini, New Technology Telescope, the 3.5-m Calar Alto Telescope, and the Nordic Optical Telescope. Our sample consists of 24 nearby SNe Ia at redshift < 0.025. We are able to confirm that no plateau exists in the Ks band for most normal SNe Ia. SNe Ia with broader optical light curves at peak tend to have a higher average brightness on the plateau in J and H, most likely due to a shallower decline in the preceding 100 d. SNe Ia that are more luminous at peak also show a steeper decline during the plateau phase in H. We compare our data to state-of-the-art radiative transfer models of nebular SNe Ia in the near-infrared. We find good agreement with the sub-Mch model that has reduced non-thermal ionization rates, but no physical justification for reducing these rates has yet been proposed. An analysis of the spectral evolution during the plateau demonstrates that the ratio of [Fe ii] to [Fe iii] contribution in a near-infrared filter determines the light curve evolution in said filter. We find that overluminous SNe decline slower during the plateau than expected from the trend seen for normal SNe Ia. 
    more » « less
  4. Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <z< 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz> 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z< 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0< 0 in ΛCDM) with over 5σconfidence. We find ( Ω M , w ) = ( 0.264 0.096 + 0.074 , 0.80 0.16 + 0.14 ) in flatwCDM. For flatw0waCDM, we find ( Ω M , w 0 , w a ) = ( 0.495 0.043 + 0.033 , 0.36 0.30 + 0.36 , 8.8 4.5 + 3.7 ) , consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses. 
    more » « less
  5. ABSTRACT We present and analyse a new tidal disruption event (TDE), AT2017eqx at redshift z = 0.1089, discovered by Pan-STARRS and ATLAS. The position of the transient is consistent with the nucleus of its host galaxy; the spectrum shows a persistent blackbody temperature T ≳ 20 000 K with broad H i and He ii emission; and it peaks at a blackbody luminosity of L ≈ 1044 erg s−1. The lines are initially centred at zero velocity, but by 100 d, the H i lines disappear while the He ii develops a blueshift of ≳ 5000 km s−1. Both the early- and late-time morphologies have been seen in other TDEs, but the complete transition between them is unprecedented. The evolution can be explained by combining an extended atmosphere, undergoing slow contraction, with a wind in the polar direction becoming visible at late times. Our observations confirm that a lack of hydrogen a TDE spectrum does not indicate a stripped star, while the proposed model implies that much of the diversity in TDEs may be due to the observer viewing angle. Modelling the light curve suggests AT2017eqx resulted from the complete disruption of a solar-mass star by a black hole of ∼106.3 M⊙. The host is another Balmer-strong absorption galaxy, though fainter and less centrally concentrated than most TDE hosts. Radio limits rule out a relativistic jet, while X-ray limits at 500 d are among the deepest for a TDE at this phase. 
    more » « less
  6. In the next decade the peculiar velocities of SNe Ia in the local z<0.3 Universe will provide a measure of γ to ±0.01 precision that can definitively distinguish between General Relativity and leading models of alternative gravity. 
    more » « less
  7. ABSTRACT Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such ‘non-Ia’ contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7–99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC (‘BEAMS with Bias Correction’), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are <0.008 when using SuperNNova, with systematic uncertainties associated with contamination around 10 per cent of the statistical uncertainty on w for the DES-SN sample. An alternative approach of discarding contaminants using outlier rejection techniques (e.g. Chauvenet’s criterion) in place of SuperNNova leads to biases on w that are larger but still modest (0.015–0.03). Finally, we measure biases due to contamination on w0 and wa (assuming a flat universe), and find these to be <0.009 in w0 and <0.108 in wa, 5 to 10 times smaller than the statistical uncertainties for the DES-SN sample. 
    more » « less