Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Characterizing the population density of species is a central interest in ecology. Eastern North America is the global hotspot for biodiversity of plethodontid salamanders, an inconspicuous component of terrestrial vertebrate communities, and among the most widespread is the eastern red-backed salamander,Plethodon cinereus. Previous work suggests population densities are high with significant geographic variation, but comparisons among locations are challenged by lack of standardization of methods and failure to accommodate imperfect detection. We present results from a large-scale research network that accounts for detection uncertainty using systematic survey protocols and robust statistical models. We analysed mark–recapture data from 18 study areas across much of the species range. Estimated salamander densities ranged from 1950 to 34 300 salamanders ha−1, with a median of 9965 salamanders ha−1. We compared these results to previous estimates forP. cinereusand other abundant terrestrial vertebrates. We demonstrate that overall the biomass ofP. cinereus, a secondary consumer, is of similar or greater magnitude to widespread primary consumers such as white-tailed deer (Odocoileus virginianus) andPeromyscusmice, and two to three orders of magnitude greater than common secondary consumer species. Our results add empirical evidence thatP. cinereus, and amphibians in general, are an outsized component of terrestrial vertebrate communities in temperate ecosystems.more » « lessFree, publicly-accessible full text available August 1, 2025
-
With the growing availability and accessibility of big data in ecology, we face an urgent need to train the next generation of scientists in data science practices and tools. One of the biggest barriers for implementing a data-driven curriculum in undergraduate classrooms is the lack of training and support for educators to develop their own skills and time to incorporate these principles into existing courses or develop new ones. Alongside the research goals of the National Ecological Observatory Network (NEON), providing education and training are key components for building a community of scientists and users equipped to utilize large-scale ecological and environmental data. To address this need, the NEON Data Education Fellows program formed as a collaborative Faculty Mentoring Network (FMN) between scientists from NEON and university faculty interested in using NEON data and resources in their ecology classrooms. Like other FMNs, this group has two main goals: 1) to provide tools, resources, and support for faculty interested in developing data-driven curriculum, and (2) to make teaching materials that have been implemented and tested in the classroom available as open educational resources for other educators. We hosted this program using an open education and collaboration platform from the Quantitative Undergraduate Biology Education and Synthesis (QUBES) project. Here, we share lessons learned from facilitating five FMN cohorts and emphasize the successes, pitfalls, and opportunities for developing open education resources through community-driven collaborations.more » « less