- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Crinnion, Anne Marie (1)
-
Gaston, Phoebe (1)
-
Grubb, Samantha (1)
-
Luthra, Sahil (1)
-
Magnuson, James S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Whether top-down feedback modulates perception has deep implications for cognitive theories. Debate has been vigorous in the domain of spoken word recognition, where competing computational models and agreement on at least one diagnostic experimental paradigm suggest that the debate may eventually be resolvable. Norris and Cutler (2021) revisit arguments against lexical feedback in spoken word recognition models. They also incorrectly claim that recent computational demonstrations that feedback promotes accuracy and speed under noise (Magnuson et al., 2018) were due to the use of the Luce choice rule rather than adding noise to inputs (noise was in fact added directly to inputs). They also claim that feedback cannot improve word recognition because feedback cannot distinguish signal from noise. We have two goals in this paper. First, we correct the record about the simulations of Magnuson et al. (2018). Second, we explain how interactive activation models selectively sharpen signals via joint effects of feedback and lateral inhibition that boost lexically-coherent sublexical patterns over noise. We also review a growing body of behavioral and neural results consistent with feedback and inconsistent with autonomous (non-feedback) architectures, and conclude that parsimony supports feedback. We close by discussing the potential for synergy between autonomous and interactive approaches.more » « less