skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grumezescu, Valentina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission. 
    more » « less