skip to main content


Search for: All records

Creators/Authors contains: "Gu, Qing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 24, 2025
  2. Abstract

    Hyperbolic metamaterial (HMM) is a unique type of anisotropic material that can exhibit metal and dielectric properties at the same time. This unique characteristic results in it having unbounded isofrequency surface contours, leading to exotic phenomena such as spontaneous emission enhancement and applications such as super-resolution imaging. However, at optical frequencies, HMM must be artificially engineered and always requires a metal constituent, whose intrinsic loss significantly limits the experimentally accessible wave vector values, thus negatively impacting the performance of these applications. The need to reduce loss in HMM stimulated the development of the second-generation HMM, termed active HMM, where gain materials are utilized to compensate for metal’s intrinsic loss. With the advent of topological photonics that allows robust light transportation immune to disorders and defects, research on HMM also entered the topological regime. Tremendous efforts have been dedicated to exploring the topological transition from elliptical to hyperbolic dispersion and topologically protected edge states in HMM, which also prompted the invention of lossless HMM formed by all-dielectric material. Furthermore, emerging twistronics can also provide a route to manipulate topological transitions in HMMs. In this review, we survey recent progress in topological effects in HMMs and provide prospects on possible future research directions.

     
    more » « less
    Free, publicly-accessible full text available February 23, 2025
  3. Free, publicly-accessible full text available April 23, 2025
  4. A miniature on-chip laser is an essential component of photonic integrated circuits for a plethora of applications, including optical communication and quantum information processing. However, the contradicting requirements of small footprint, robustness, single-mode operation, and high output power have led to a multi-decade search for the optimal on-chip laser design. During this search, topological phases of matter—conceived initially in electronic materials in condensed matter physics—were successfully extended to photonics and applied to miniature laser designs. Benefiting from the topological protection, a topological edge mode laser can emit more efficiently and more robustly than one emitting from a trivial bulk mode. In addition, single-mode operation over a large range of excitation energies can be achieved by strategically manipulating topological modes in a laser cavity. In this Perspective, we discuss the recent progress of topological on-chip lasers and an outlook on future research directions.

     
    more » « less
  5. A Reset MOSFET is added to a perovskite MOSFET-based photodetector to serve as a current source to mitigate the influence of ionic movement on the performance of the photodetector. With the added MOSFET, the hysteresis is significantly reduced, and the dark current is controllable. The on/off ratio resumes to 10^6 and an ultrasensitive responsivity (over 80,000 A/W) is achieved under only 13 nW/cm^2 red (665 nm) light intensity. 
    more » « less