skip to main content

Search for: All records

Creators/Authors contains: "Guan, Le"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the rapid expansion of the Internet of Things, a vast number of microcontroller-based IoT devices are now susceptible to attacks through the Internet. Vulnerabilities within the firmware are one of the most important attack surfaces. Fuzzing has emerged as one of the most effective techniques for identifying such vulnerabilities. However, when applied to IoT firmware, several challenges arise, including: (1) the inability of firmware to execute properly in the absence of peripherals, (2) the lack of support for exploring input spaces of multiple peripherals, (3) difficulties in instrumenting and gathering feedback, and (4) the absence of a fault detection mechanism. To address these challenges, we have developed and implemented an innovative peripheral-independent hybrid fuzzing tool called . This tool enables testing of microcontroller-based firmware without reliance on specific peripheral hardware. First, a unified virtual peripheral was integrated to model the behaviors of various peripherals, thus enabling the physical devices-agnostic firmware execution. Then, a hybrid event generation approach was used to generate inputs for different peripheral accesses. Furthermore, two-level coverage feedback was collected to optimize the testcase generation. Finally, a plugin-based fault detection mechanism was implemented to identify typical memory corruption vulnerabilities. A Large-scale experimental evaluation has been performed to show ’s effectiveness and efficiency. 
    more » « less
  2. Although the importance of using static taint analysis to detect taint-style vulnerabilities in Linux-based embedded firmware is widely recognized, existing approaches are plagued by following major limitations: (a) Existing works cannot properly handle indirect call on the path from attacker-controlled sources to security-sensitive sinks, resulting in lots of false negatives. (b) They employ heuristics to identify mediate taint source and it is not accurate enough, which leads to high false positives. To address issues, we propose EmTaint, a novel static approach for accurate and fast detection of taint-style vulnerabilities in Linux-based embedded firmware. In EmTaint, we first design a structured symbolic expression-based (SSE-based) on-demand alias analysis technique. Based on it, we come up with indirect call resolution and accurate taint analysis scheme. Combined with sanitization rule checking, EmTaint can eventually discovers a large number of taint-style vulnerabilities accurately within a limited time. We evaluated EmTaint against 35 real-world embedded firmware samples from six popular vendors. The result shows EmTaint discovered at least 192 vulnerabilities, including 41 n-day vulnerabilities and 151 0-day vulnerabilities. At least 115 CVE/PSV numbers have been allocated from a subset of the reported vulnerabilities at the time of writing. Compared with state-of-the-art tools such as KARONTE and SaTC, EmTaint found significantly more vulnerabilities on the same dataset in less time. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)