skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gudi, Dhanvini"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lead Sulfide (PbS) colloidal quantum dots (CQDs) are promising materials for flexible and wearable photovoltaic devices and technologies due to their low cost, solution processibility and bandgap tunability with quantum dot size. However, PbS CQD solar cells have limitations on performance efficiency due to charge transport losses in the CQD layers and hole transport layer (HTL). This study pursues two promising techniques in parallel to address these challenges. Solution-phase annealing of the absorbing PbS-PbX2 (X = Br, I) layer can reduce charge transport losses by removing oleic acid and parasitic hydroxyl ligands. Additionally, optoelectronic simulations are used to show that HTL performance can be improved by the addition of a 2D transition metal dichalcogenide (TMD) layer to the PbS CQD-based HTL. We use solution-phase exfoliation to produce and incorporate 2D WSe2 nanoflakes into the HTL. We report a power conversion efficiency (PCE) increase of up to 3.4% for the solution-phase-annealed devices and up to 1% for the 2D WSe2 HTL augmented devices. A combination of these two techniques should result in high-performing PbS CQD solar cells, paving the way for further advancements in flexible photovoltaics. 
    more » « less
  2. Colloidal quantum dots (CQDs) are promising materials for photovoltaic applications due to their solution processibility and size-dependent band gap tunability. The electron transport layer (ETL) is an important component of PbS CQD solar cells, and the quality of the zinc oxide nanoparticle (ZnO NP) ETL film significantly impacts both the power conversion efficiency (PCE) and fabrication yield of CQD solar cells. We report on multiple methods to improve the quality of ZnO NP ETL films and demonstrate increased PCE and device yield in standard CQD solar cells employing optimized ZnO NP films. We also discuss the application of these methods in an inverted CQD solar cell architecture. 
    more » « less