skip to main content


Search for: All records

Creators/Authors contains: "Guglielmo, Tyler"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We use a combination of analytical and numerical methods to study out-of-time order correlators (OTOCs) in the sparse Sachdev-Ye-Kitaev (SYK) model. We find that at a given order of N, the standard result for the q-local, all-to-all SYK, obtained through the sum over ladder diagrams, is corrected by a series in the sparsity parameter, k. We present an algorithm to sum the diagrams at any given order of 1/(kq)n. We also study OTOCs numerically as a function of the sparsity parameter and determine the Lyapunov exponent. We find that numerical stability when extracting the Lyapunov exponent requires averaging over a massive number of realizations. This trade-off between the efficiency of the sparse model and consistent behavior at finite N becomes more significant for larger values of N. 
    more » « less
    Free, publicly-accessible full text available November 16, 2024
  2. A<sc>bstract</sc>

    We use a combination of analytical and numerical methods to study out-of-time order correlators (OTOCs) in the sparse Sachdev-Ye-Kitaev (SYK) model. We find that at a given order ofN, the standard result for theq-local, all-to-all SYK, obtained through the sum over ladder diagrams, is corrected by a series in the sparsity parameter,k. We present an algorithm to sum the diagrams at any given order of 1/(kq)n. We also study OTOCs numerically as a function of the sparsity parameter and determine the Lyapunov exponent. We find that numerical stability when extracting the Lyapunov exponent requires averaging over a massive number of realizations. This trade-off between the efficiency of the sparse model and consistent behavior at finiteNbecomes more significant for larger values ofN.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  3. A bstract In order to study the chaotic behavior of a system with non-local interactions, we will consider weakly coupled non-commutative field theories. We compute the Lyapunov exponent of this exponential growth in the large Moyal-scale limit to leading order in the t’Hooft coupling and 1/ N . We found that in this limit, the Lyapunov exponent remains comparable in magnitude to (and somewhat smaller than) the exponent in the commutative case. This can possibly be explained by the infrared sensitivity of the Lyapunov exponent. Another possible explanation is that in examples of weakly coupled non-commutative field theories, non-local contributions to various thermodynamic quantities are sub-dominant. 
    more » « less
  4. A<sc>bstract</sc>

    We explore the effect of introducing mild nonlocality into otherwise local, chaotic quantum systems, on the rate of information spreading and associated rates of entanglement generation and operator growth. We consider various forms of nonlocality, both in 1-dimensional spin chain models and in holographic gauge theories, comparing the phenomenology of each. Generically, increasing the level of nonlocality increases the rate of information spreading, but in lattice models we find instances where these rates are slightly suppressed.

     
    more » « less