Data-driven models of stellar spectra are useful tools to study nonstellar information, such as the diffuse interstellar bands (DIBs) caused by intervening interstellar material. Using ∼55,000 spectra of ∼17,000 red clump stars from the APOGEE DR16 data set, we create second-order polynomial models of the continuum-normalized flux as a function of stellar parameters (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract T eff, , [Fe/H], [α /Fe], and age). The model and data show good agreement within uncertainties across the APOGEE wavelength range, although many regions reveal residuals that are not in the stellar rest-frame. We show that many of these residual features—having average extrema at the level of ∼3% in stellar flux on average—can be attributed to incompletely removed spectral lines from the Earth’s atmosphere and DIBs from the interstellar medium (ISM). After removing most of the remaining contamination from Earth’s sky, we identify 84 absorption features not seen in unreddened sightlights that have <50% probability of being noise artifacts—with 25 of these features having <5% probability of being noise artifacts—including all 10 previously known DIBs in the APOGEE wavelength range. Because many of these features occur in the wavelength windows that APOGEE uses to measure chemical abundances, note that characterization and removal of this nonstellar contamination establish an important step in reaching the precision required for chemical tagging experiments. Proper characterization of these features will benefit Galactic ISM science and the currently ongoing Milky Way Mapper program of Sloan Digital Sky Survey V, which relies on the APOGEE spectrograph. -
Abstract RR Lyrae stars are standard candles with characteristic photometric variability and serve as powerful tracers of Galactic structure, substructure, accretion history, and dark matter content. Here we report the discovery of distant RR Lyrae stars, including some of the most distant stars known in the Milky Way halo, with Galactocentric distances of ∼300 kpc. We use time-series
Canada–France–Hawaii Telescope/MegaCam photometry from the Next Generation Virgo Cluster Survey (NGVS). We use a template light-curve fitting method based on empirical Sloan Digital Sky Survey Stripe 82 RR Lyrae data to identify RR Lyrae candidates in the NGVS data set. We eliminate several hundred suspected quasars and identify 180 RR Lyrae candidates with heliocentric distances of ∼20–300 kpc. The halo stellar density distribution is consistent with anr −4.09±0.10power-law radial profile over most of this distance range with no signs of a break. The distribution of ab-type RR Lyrae in a period–amplitude plot (Bailey diagram) suggests that the mean metallicity of the halo decreases outward. Compared to other recent RR Lyrae surveys, like Pan-STARRS1, the High Cadence Transient Survey, and the Dark Energy Survey, our NGVS study has better single-epoch photometric precision and a comparable number of epochs but smaller sky coverage. At large distances, our RR Lyrae sample appears to be relatively pure and complete, with well-measured periods and amplitudes. These newly discovered distant RR Lyrae stars are important additions to the few secure stellar tracers beyond 150 kpc in the Milky Way halo. -
Abstract We present deep Hubble Space Telescope photometry of 10 targets from Treasury Program GO-14734, including six confirmed ultrafaint dwarf (UFD) galaxies, three UFD candidates, and one likely globular cluster. Six of these targets are satellites of, or have interacted with, the Large Magellanic Cloud (LMC). We determine their structural parameters using a maximum-likelihood technique. Using our newly derived half-light radius (
r h ) andV -band magnitude (M V ) values in addition to literature values for other UFDs, we find that UFDs associated with the LMC do not show any systematic differences from Milky Way UFDs in the magnitude–size plane. Additionally, we convert simulated UFD properties from the literature into theM V –r h observational space to examine the abilities of current dark matter (DM) and baryonic simulations to reproduce observed UFDs. Some of these simulations adopt alternative DM models, thus allowing us to also explore whether theM V –r h plane could be used to constrain the nature of DM. We find no differences in the magnitude–size plane between UFDs simulated with cold, warm, and self-interacting DM, but note that the sample of UFDs simulated with alternative DM models is quite limited at present. As more deep, wide-field survey data become available, we will have further opportunities to discover and characterize these ultrafaint stellar systems and the greater low surface-brightness universe.Free, publicly-accessible full text available May 1, 2025 -
Abstract We have conducted a systematic search around the Milky Way (MW) analog NGC 253 (
D = 3.5 Mpc), as a part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS)—a Magellan+Megacam survey to identify dwarfs and other substructures in resolved stellar light around MW-mass galaxies outside of the Local Group. In total, NGC 253 has five satellites identified by PISCeS within 100 kpc with an absoluteV -band magnitude ofM V < −7. We have additionally obtained deep Hubble Space Telescope imaging of four reported candidates beyond the survey footprint: Do III, Do IV, and dw0036m2828 are confirmed to be satellites of NGC 253, while SculptorSR is found to be a background galaxy. We find no convincing evidence for the presence of a plane of satellites surrounding NGC 253. We construct its satellite luminosity function, which is complete down toM V ≲ −8 out to 100 kpc andM V ≲ −9 out to 300 kpc, and compare it to those calculated for other Local Volume galaxies. Exploring trends in satellite counts and star-forming fractions among satellite systems, we find relationships with host stellar mass, environment, and morphology, pointing to a complex picture of satellite formation, and a successful model has to reproduce all of these trends. -
We report discovery and characterization of a main-sequence G star orbiting a dark object with mass. The system was discovered via Gaia astrometry and has an orbital period of 731 days. We obtained multi-epoch RV follow-up over a period of 639 days, allowing us to refine the Gaia orbital solution and precisely constrain the masses of both components. The luminous star is a,Gyr-old, low-metallicity halo star near the main-sequence turnoff (,K; ; ;) with a highly enhanced lithium abundance. The RV mass function sets a minimum companion mass for an edge-on orbit of, well above the Chandrasekhar limit. The Gaia inclination constraint,,deg, then implies a companion mass of. The companion is most likely a massive neutron star: the only viable alternative is two massive white dwarfs in a close binary, but this scenario is disfavored on evolutionary grounds. The system’s low eccentricity () disfavors dynamical formation channels and implies that the neutron star likely formed with little mass loss () and with a weak natal kick (). Stronger kicks with more mass loss are not fully ruled out but would imply that a larger population of similar systems with higher eccentricities should exist. The current orbit is too small to have accommodated the neutron star progenitor as a red supergiant or super-AGB star. The simplest formation scenario – isolated binary evolution – requires the system to have survived unstable mass transfer and common envelope evolution with a donor-to-accretor mass ratio. The system, which we call Gaia NS1, is likely a progenitor of symbiotic X-ray binaries and long-period millisecond pulsars. Its discovery challenges binary evolution models and bodes well for Gaia’s census of compact objects in wide binaries.
Free, publicly-accessible full text available January 1, 2025 -
Abstract The dwarf galaxy Triangulum (M33) presents an interesting testbed for studying stellar halo formation: it is sufficiently massive so as to have likely accreted smaller satellites, but also lies within the regime where feedback and other “in situ” formation mechanisms are expected to play a role. In this work, we analyze the line-of-sight kinematics of stars across M33 from the TREX survey, with a view to understanding the origin of its halo. We split our sample into two broad populations of varying age, comprising 2032 “old” red giant branch stars and 671 “intermediate-age” asymptotic giant branch and carbon stars. We find decisive evidence for two distinct kinematic components in both the old and intermediate-age populations: a low-dispersion (∼22 km s−1) disk-like component corotating with M33's H
i gas and a significantly higher-dispersion component (∼50–60 km s−1) that does not rotate in the same plane as the gas and is thus interpreted as M33's stellar halo. While kinematically similar, the fraction of stars associated with the halo component differs significantly between the two populations: this is consistently ∼10% for the intermediate-age population, but decreases from ∼34% to ∼10% as a function of radius for the old population. We additionally find evidence that the intermediate-age halo population is systematically offset from the systemic velocity of M33 by ∼25 km s−1, with a preferred central LOS velocity of ∼ − 155 km s−1. This is the first detection and characterization of an intermediate-age halo in M33, and suggests in situ formation mechanisms, as well as potentially tidal interactions, have helped shaped it. -
Abstract We present Keck/DEIMOS spectroscopy of the first complete sample of ultradiffuse galaxies (UDGs) in the Virgo cluster. We select all UDGs in Virgo that contain at least 10 globular cluster (GC) candidates and are more than 2.5 σ outliers in scaling relations of size, surface brightness, and luminosity (a total of 10 UDGs). We use the radial velocity of their GC satellites to measure the velocity dispersion of each UDG. We find a mixed bag of galaxies, from one UDG that shows no signs of dark matter, to UDGs that follow the luminosity–dispersion relation of early-type galaxies, to the most extreme examples of heavily dark matter–dominated galaxies that break well-known scaling relations such as the luminosity–dispersion or U-shaped total mass-to-light ratio relations. This is indicative of a number of mechanisms at play forming these peculiar galaxies. Some of them may be the most extended version of dwarf galaxies, while others are so extreme that they seem to populate dark matter halos consistent with that of the Milky Way or even larger. Even though Milky Way stars and other GC interlopers contaminating our sample of GCs cannot be fully ruled out, our assessment of this potential problem and simulations indicate that the probability is low and, if present, unlikely to be enough to explain the extreme dispersions measured. Further confirmation from stellar kinematics studies in these UDGs would be desirable. The lack of such extreme objects in any of the state-of-the-art simulations opens an exciting avenue of new physics shaping these galaxies.more » « less
-
Abstract The Halo Assembly in Lambda Cold Dark Matter: Observations in 7 Dimensions (HALO7D) survey measures the kinematics and chemical properties of stars in the Milky Way (MW) stellar halo to learn about the formation of our Galaxy. HALO7D consists of Keck II/DEIMOS spectroscopy and Hubble Space Telescope–measured proper motions of MW halo main-sequence turnoff stars in the four Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields. HALO7D consists of deep pencil beams, making it complementary to other contemporary wide-field surveys. We present the [Fe/H] and [
α /Fe] abundances for 113 HALO7D stars in the Galactocentric radial range of ∼10–40 kpc along four separate pointings. Using the full 7D chemodynamical data (3D positions, 3D velocities, and abundances) of HALO7D, we measure the velocity anisotropy,β , of the halo velocity ellipsoid for each field and for different metallicity-binned subsamples. We find that two of the four fields have stars on very radial orbits, while the remaining two have stars on more isotropic orbits. Separating the stars into high-, mid-, and low-[Fe/H] bins at −2.2 and −1.1 dex for each field separately, we find differences in the anisotropies between the fields and between the bins; some fields appear dominated by radial orbits in all bins, while other fields show variation between the [Fe/H] bins. These chemodynamical differences are evidence that the HALO7D fields have different fractional contributions from the progenitors that built up the MW stellar halo. Our results highlight the additional information available on smaller spatial scales compared to results from a spherical average of the stellar halo. -
Abstract We describe the discovery of a solar neighborhood ( d = 468 pc) binary system with a main-sequence sunlike star and a massive noninteracting black hole candidate. The spectral energy distribution of the visible star is described by a single stellar model. We derive stellar parameters from a high signal-to-noise Magellan/MIKE spectrum, classifying the star as a main-sequence star with T eff = 5972 K, log g = 4.54 , and M = 0.91 M ⊙ . The spectrum shows no indication of a second luminous component. To determine the spectroscopic orbit of the binary, we measured the radial velocities of this system with the Automated Planet Finder, Magellan, and Keck over four months. We show that the velocity data are consistent with the Gaia astrometric orbit and provide independent evidence for a massive dark companion. From a combined fit of our spectroscopic data and the astrometry, we derive a companion mass of 11.39 − 1.31 + 1.51 M ⊙ . We conclude that this binary system harbors a massive black hole on an eccentric ( e = 0.46 ± 0.02), 185.4 ± 0.1 day orbit. These conclusions are independent of El-Badry et al., who recently reported the discovery of the same system. A joint fit to all available data yields a comparable period solution but a lower companion mass of 9.32 − 0.21 + 0.22 M ⊙ . Radial velocity fits to all available data produce a unimodal solution for the period that is not possible with either data set alone. The combination of both data sets yields the most accurate orbit currently available.more » « less
-
We use deep Hubble Space Telescope imaging to study the evolutionary state of of the Virgo Cluster ultradiffuse galaxy (UDG) VCC 615. Using the tip of the red giant branch method, we pinpoint the galaxy's location with Virgo to be on the far side of the cluster, near the Virgo virial radius. When combined with the galaxy's measured line of sight velocity, we find the galaxy to be on an outbound orbit, having likely passed near the cluster core within the past billion years. Given the galaxy's largely undisturbed morphology, we argue that the galaxy has experienced no recent and sudden transformation into a UDG due to the cluster potential, but rather is a long-lived UDG whose relatively wide orbit and large dynamical mass protect it from stripping and destruction by Virgo cluster tides. Our Hubble imaging resolves individual globular clusters within VCC 615 down to a limiting half-light radius of 1 pc, allowing for a clean determination of the size distribution and luminosity function of the galaxy's globular cluster population. The total mass of the galaxy derived from the size of its globular cluster population is comparable to our previous work estimate from the mass from the globular cluster kinematics. Finally, we also derive the structural properties of the galaxy's nucleus and find them similar to the properties of ultracompact galaxies (UCDs) in the Virgo core, suggesting a dynamical link between UCDs and nucleated UDGs in cluster environments.more » « less