It is clear that within the class of ultra-diffuse galaxies (UDGs), there is an extreme range in the richness of their associated globular cluster (GC) systems. Here, we report the structural properties of five UDGs in the Perseus cluster based on deep Subaru/Hyper Suprime-Cam imaging. Three appear GC-poor and two appear GC-rich. One of our sample, PUDG_R24, appears to be undergoing quenching and is expected to fade into the UDG regime within the next ∼0.5 Gyr. We target this sample with Keck Cosmic Web Imager (KCWI) spectroscopy to investigate differences in their dark matter haloes, as expected from their differing GC content. Our spectroscopy measures both recessional velocities, confirming Perseus cluster membership, and stellar velocity dispersions, to measure dynamical masses within their half-light radius. We supplement our data with that from the literature to examine trends in galaxy parameters with GC system richness. We do not find the correlation between GC numbers and UDG phase space positioning expected if GC-rich UDGs environmentally quench at high redshift. We do find GC-rich UDGs to have higher velocity dispersions than GC-poor UDGs on average, resulting in greater dynamical mass within the half-light radius. This agrees with the first order expectation that GC-rich UDGs have higher halo masses than GC-poor UDGs.
- NSF-PAR ID:
- 10430702
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 951
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 77
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT The velocity dispersion of globular clusters (GCs) around ultra-diffuse galaxies (UDGs) in the Virgo cluster spans a wide range, including cases where GC kinematics suggest haloes as massive as (or even more massive than) that of the Milky Way around these faint dwarfs. We analyse the catalogues of GCs derived in post-processing from the TNG50 cosmological simulation to study the GC system kinematics and abundance of simulated UDGs in galaxy groups and clusters. UDGs in this simulation reside exclusively in dwarf-mass haloes with M200 ≲ 1011.2 M⊙. When considering only GCs gravitationally bound to simulated UDGs, we find GCs properties that overlap well with several observational measurements for UDGs. In particular, no bias towards overly massive haloes is inferred from the study of bound GCs, confirming that GCs are good tracers of UDG halo mass. However, we find that contamination by intracluster GCs may, in some cases, substantially increase velocity dispersion estimates when performing projected mock observations of our sample. We caution that targets with less than 10 GC tracers are particularly prone to severe uncertainties. Measuring the stellar kinematics of the host galaxy should help confirm the unusually massive haloes suggested by GC kinematics around some UDGs.
-
We use deep Hubble Space Telescope imaging to study the evolutionary state of of the Virgo Cluster ultradiffuse galaxy (UDG) VCC 615. Using the tip of the red giant branch method, we pinpoint the galaxy's location with Virgo to be on the far side of the cluster, near the Virgo virial radius. When combined with the galaxy's measured line of sight velocity, we find the galaxy to be on an outbound orbit, having likely passed near the cluster core within the past billion years. Given the galaxy's largely undisturbed morphology, we argue that the galaxy has experienced no recent and sudden transformation into a UDG due to the cluster potential, but rather is a long-lived UDG whose relatively wide orbit and large dynamical mass protect it from stripping and destruction by Virgo cluster tides. Our Hubble imaging resolves individual globular clusters within VCC 615 down to a limiting half-light radius of 1 pc, allowing for a clean determination of the size distribution and luminosity function of the galaxy's globular cluster population. The total mass of the galaxy derived from the size of its globular cluster population is comparable to our previous work estimate from the mass from the globular cluster kinematics. Finally, we also derive the structural properties of the galaxy's nucleus and find them similar to the properties of ultracompact galaxies (UCDs) in the Virgo core, suggesting a dynamical link between UCDs and nucleated UDGs in cluster environments.more » « less
-
ABSTRACT We derive the stellar population parameters of 11 quiescent ultra-diffuse galaxies (UDGs) from Keck/KCWI data. We supplement these with 14 literature UDGs, creating the largest spectroscopic sample of UDGs to date (25). We find a strong relationship between their α-enhancement and their star formation histories: UDGs that formed on very short time-scales have elevated [Mg/Fe] abundance ratios, whereas those forming over extended periods present lower values. Those forming earlier and faster are overall found in high-density environments, being mostly early infalls into the cluster. No other strong trends are found with infall times. We analyse the stellar mass–metallicity, age–metallicity, and [Mg/Fe]–metallicity relations of the UDGs, comparing them to other types of low mass galaxies. Overall, UDGs scatter around the established stellar mass–metallicity relations of classical dwarfs. We find that GC-rich UDGs have intermediate-to-old ages, but previously reported trends of galaxy metallicity and GC richness are not reproduced with this spectroscopic sample due to the existence of GC-rich UDGs with elevated metallicities. In addition, we also find that a small fraction of UDGs could be ‘failed-galaxies’, supported by their GC richness, high alpha-abundance, fast formation time-scales and that they follow the mass–metallicity relation of z ∼2 galaxies. Finally, we also compare our observations to simulated UDGs. We caution that there is not a single simulation that can produce the diverse UDG properties simultaneously, in particular the low metallicity failed galaxy like UDGs.
-
Abstract Some Ultra Diffuse Galaxies (UDGs) appear to host exceptionally rich globular cluster (GC) systems compared to normal galaxies of the same stellar mass. After re-examing these claims, we focus on a small sample of UDGs from the literature that have both rich GC systems (NGC >20) and a measured galaxy velocity dispersion. We find that UDGs with more GCs have higher dynamical masses and that GC-rich UDGs are dark matter dominated within their half-light radii. We extrapolate these dynamical masses to derive total halo masses assuming cuspy and cored mass profiles. We find reasonable agreement between halo masses derived from GC numbers (assuming the GC number - halo mass relation) and from cored halo profiles. This suggests that GC-rich UDGs do not follow the standard stellar mass – halo mass relation, occupying overly massive cored halos for their stellar mass. A similar process to that invoked for some Local Group dwarfs, of early quenching, may result in GC-rich UDGs that have failed to form the expected mass of stars in a given halo (and thus giving the appearance of overly an massive halo). Simulations that correctly reproduce the known properties of GC systems associated with UDGs are needed.