skip to main content


Search for: All records

Creators/Authors contains: "Guo, Chunyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract

    Interferons (IFNs) are cytokines produced and secreted by immune cells when viruses, tumour cells, and so forth, invade the body. Their biological effects are diverse, including antiviral, cell growth-inhibiting, and antitumour effects. The main subclasses of IFNs include type-I (e.g. IFN-α and IFN-β) and type-II (IFN-γ), which activate intracellular signals by binding to type-I and type-II IFN receptors, respectively. We have previously shown that when macrophages are treated with supersulphide donors, which have polysulphide structures in which three or more sulphur atoms are linked within the molecules, IFN-β-induced cellular responses, including signal transducer and activator of transcription 1 (STAT1) phosphorylation and inducible nitric oxide synthase (iNOS) expression, were strongly suppressed. However, the subfamily specificity of the suppression of IFN signals by supersulphides and the mechanism of this suppression are unknown. This study demonstrated that supersulphide donor N-acetyl-L-cysteine tetrasulphide (NAC-S2) can inhibit IFN signalling in macrophages stimulated not only with IFN-α/β but also with IFN-γ. Our data suggest that NAC-S2 blocks phosphorylation of Janus kinases (JAKs), thereby contributing to the inhibition of phosphorylation of STAT1. Under the current experimental conditions, the hydrogen sulphide (H2S) donor NaHS failed to inhibit IFN signalling. Similar to NAC-S2, the carbohydrate-based supersulphide donor thioglucose tetrasulphide (TGS4) was capable of strongly inhibiting tumour necrosis factor-α production, iNOS expression, and nitric oxide production from macrophages stimulated with lipopolysaccharide. Further understanding of the molecular mechanisms by which supersulphide donors exhibit their inhibitory actions towards JAK/STAT signalling is a necessary basis for the development of supersulphide-based therapeutic strategy against autoimmune disorders with dysregulated IFN signalling.

     
    more » « less
  3. Abstract

    The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conductivity have large carrier densities that push the plasma edge into the ultra-violet range. Technological solutions reflect this trade-off, achieving the desired transparencies only by reducing the conductor thickness or carrier density at the expense of a lower conductance. Here we demonstrate that highly anisotropic crystalline conductors offer an alternative solution, avoiding this compromise by separating the directions of conduction and transmission. We demonstrate that slabs of the layered oxides Sr2RuO4and Tl2Ba2CuO6+δare optically transparent even at macroscopic thicknesses >2 μm for c-axis polarized light. Underlying this observation is the fabrication of out-of-plane slabs by focused ion beam milling. This work provides a glimpse into future technologies, such as highly polarized and addressable optical screens.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. The impact of nonmagnetic and magnetic impurities on topological insulators is a central focus concerning their fundamental physics and possible spintronics and quantum computing applications. Combining scanning tunneling spectroscopy with transport measurements, we investigate, both locally and globally, the effect of nonmagnetic and magnetic substituents in SmB 6 , a predicted topological Kondo insulator. Around the so-introduced substitutents and in accord with theoretical predictions, the surface states are locally suppressed with different length scales depending on the substituent’s magnetic properties. For sufficiently high substituent concentrations, these states are globally destroyed. Similarly, using a magnetic tip in tunneling spectroscopy also resulted in largely suppressed surface states. Hence, a destruction of the surface states is always observed close to atoms with substantial magnetic moment. This points to the topological nature of the surface states in SmB 6 and illustrates how magnetic impurities destroy the surface states from microscopic to macroscopic length scales. 
    more » « less