- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Dong, Haibo (2)
-
Guo, Jiacheng (2)
-
Chi, Yinding (1)
-
Hong, Yaoye (1)
-
Huang, Zihao (1)
-
Menzer, Alec (1)
-
Qing, Haitao (1)
-
Quinn, Daniel (1)
-
Yin, Jie (1)
-
Zhu, Yuanhang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Manta rays use wing-like pectoral fins for intriguing oscillatory swimming. It provides rich inspiration for designing potentially fast, efficient, and maneuverable soft swimming robots, which, however, have yet to be realized. It remains a grand challenge to combine fast speed, high efficiency, and high maneuverability in a single soft swimmer while using simple actuation and control. Here, we report leveraging spontaneous snapping stroke in the monostable flapping wing of a manta-like soft swimmer to address the challenge. The monostable wing is pneumatically actuated to instantaneously snap through to stroke down, and upon deflation, it will spontaneously stroke up by snapping back to its initial state, driven by elastic restoring force, without consuming additional energy. This largely simplifies designs, actuation, and control for achieving a record-high speed of 6.8 body length per second, high energy efficiency, and high maneuverability and collision resilience in navigating through underwater unstructured environments with obstacles by simply tuning single-input actuation frequencies.more » « lessFree, publicly-accessible full text available December 6, 2025
-
Huang, Zihao; Menzer, Alec; Guo, Jiacheng; Dong, Haibo (, Bioinspiration & Biomimetics)Abstract This study investigates the interaction of a two-manta-ray school using computational fluid dynamics simulations. The baseline case consists of two in-phase undulating three-dimensional manta models arranged in a stacked configuration. Various vertical stacked and streamwise staggered configurations are studied by altering the locations of the top manta in the upstream and downstream directions. Additionally, phase differences between the two mantas are considered. Simulations are conducted using an in-house developed incompressible flow solver with an immersed boundary method. The results reveal that the follower will significantly benefit from the upstroke vortices (UVs) and downstroke vortices depending on its streamwise separation. We find that placing the top manta 0.5 body length (BL) downstream of the bottom manta optimizes its utilization of UVs from the bottom manta, facilitating the formation of leading-edge vortices (LEVs) on the top manta’s pectoral fins during the downstroke. This LEV strengthening mechanism, in turn, generates a forward suction force on the follower that results in a 72% higher cycle-averaged thrust than a solitary swimmer. This benefit harvested from UVs can be further improved by adjusting the phase of the top follower. By applying a phase difference of to the top manta, the follower not only benefits from the UVs of the bottom manta but also leverages the auxiliary vortices during the upstroke, leading to stronger tip vortices and a more pronounced forward suction force. The newfound interaction observed in schooling studies offers significant insights that can aid in the development of robot formations inspired by manta rays.more » « less
An official website of the United States government
