skip to main content


Search for: All records

Creators/Authors contains: "Guo, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a hybrid model that synergistically combines machine learning (ML) with semiconductor device physics to simulate nanoscale transistors. This approach integrates a physics-based ballistic transistor model with an ML model that predicts ballisticity, enabling flexibility to interface the model with device data. The inclusion of device physics not only enhances the interpretability of the ML model but also streamlines its training process, reducing the necessity for extensive training data. The model's effectiveness is validated on both silicon nanotransistors and carbon nanotube FETs, demonstrating high model accuracy with a simplified ML component. We assess the impacts of various ML models—Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), and RandomForestRegressor (RFR)—on predictive accuracy and training data requirements. Notably, hybrid models incorporating these components can maintain high accuracy with a small training dataset, with the RNN-based model exhibiting better accuracy compared to the MLP and RFR models. The trained hybrid model provides significant speedup compared to device simulations, and can be applied to predict circuit characteristics based on the modeled nanotransistors. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. Free, publicly-accessible full text available August 19, 2025
  3. Free, publicly-accessible full text available April 1, 2025
  4. Abstract

    The existence of quantum tricriticality and exotic phases are found in a tricritical Dicke triangle (TDT) where three cavities, each one containing an ensemble of three-level atoms, are connected to each other through the action of an artificial magnetic field. The conventional superradiant phase (SR) is connected to the normal phase through first- and second-order boundaries, with tricritical points located at the intersection of such boundaries. Apart from the SR phase, a chiral superradiant (CSR) phase is found by tuning the artificial magnetic field. This phase is characterized by a nonzero photon current and its boundary presents chiral tricritical points (CTCPs). Through the study of different critical exponents, we are able to differentiate the universality class of the CTCP and TCP from that of second-order critical points, as well as find distinctive critical behavior among the two different superradiant phases. The TDT can be implemented in various systems, including atoms in optical cavities as well as the circuit QED system, allowing the exploration of a great variety of critical manifolds.

     
    more » « less