Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ObjectiveSNOMED CT provides a standardized terminology for clinical concepts, allowing cohort queries over heterogeneous clinical data including Electronic Health Records (EHRs). While it is intuitive that missing and inaccurate subtype (or is-a) relations in SNOMED CT reduce the recall and precision of cohort queries, the extent of these impacts has not been formally assessed. This study fills this gap by developing quantitative metrics to measure these impacts and performing statistical analysis on their significance. Material and MethodsWe used the Optum de-identified COVID-19 Electronic Health Record dataset. We defined micro-averaged and macro-averaged recall and precision metrics to assess the impact of missing and inaccurate is-a relations on cohort queries. Both practical and simulated analyses were performed. Practical analyses involved 407 missing and 48 inaccurate is-a relations confirmed by domain experts, with statistical testing using Wilcoxon signed-rank tests. Simulated analyses used two random sets of 400 is-a relations to simulate missing and inaccurate is-a relations. ResultsWilcoxon signed-rank tests from both practical and simulated analyses (P-values < .001) showed that missing is-a relations significantly reduced the micro- and macro-averaged recall, and inaccurate is-a relations significantly reduced the micro- and macro-averaged precision. DiscussionThe introduced impact metrics can assist SNOMED CT maintainers in prioritizing critical hierarchical defects for quality enhancement. These metrics are generally applicable for assessing the quality impact of a terminology’s subtype hierarchy on its cohort query applications. ConclusionOur results indicate a significant impact of missing and inaccurate is-a relations in SNOMED CT on the recall and precision of cohort queries. Our work highlights the importance of high-quality terminology hierarchy for cohort queries over EHR data and provides valuable insights for prioritizing quality improvements of SNOMED CT's hierarchy.more » « less
-
Abstract Dissipative Kerr soliton microcombs in microresonators have enabled fundamental advances in chip-scale precision metrology, communication, spectroscopy, and parallel signal processing. Here we demonstrate polarization-diverse soliton transitions and deterministic switching dynamics of a self-stabilized microcomb in a strongly-coupled dispersion-managed microresonator driven with a single pump laser. The switching dynamics are induced by the differential thermorefractivity between coupled transverse-magnetic and transverse-electric supermodes during the forward-backward pump detunings. The achieved large soliton existence range and deterministic transitions benefit from the switching dynamics, leading to the cross-polarized soliton microcomb formation when driven in the transverse-magnetic supermode of the single resonator. Secondly, we demonstrate two distinct polarization-diverse soliton formation routes – arising from chaotic or periodically-modulated waveforms via pump power selection. Thirdly, to observe the cross-polarized supermode transition dynamics, we develop a parametric temporal magnifier with picosecond resolution, MHz frame rate and sub-ns temporal windows. We construct picosecond temporal transition portraits in 100-ns recording length of the strongly-coupled solitons, mapping the transitions from multiple soliton molecular states to singlet solitons. This study underpins polarization-diverse soliton microcombs for chip-scale ultrashort pulse generation, supporting applications in frequency and precision metrology, communications, spectroscopy and information processing.more » « less
An official website of the United States government

Full Text Available