Magnitude measurement of chlorophyll
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
a fluorescence (ChlF) involves challenges, and dynamic responses to variable excitations may offer an alternative. In this research, ChlF was measured during strong actinic light by using a pseudo-random binary sequence as a time-variant multiple-frequency illumination excitation. The responses were observed in the time domain but were primarily analyzed in the frequency domain in terms of amplitude gain variations. The excitation amplitude was varied, and moisture loss was used to induce changes in the plant samples for further analysis. The results show that when nonphotochemical quenching (NPQ) activities start, the amplitude of ChlF responses vary, making the ChlF responses to illumination excitations nonlinear and nonstationary. NPQ influences the ChlF responses in low frequencies, most notably below 0.03 rad/s. The low-frequency gain is linearly correlated with NPQ and can thus be used as a reference to compensate for the variations in ChlF measurements. The high-frequency amplitude gain showed a stronger correlation with moisture loss after correction with the low-frequency gain. This work demonstrates the usefulness of dynamic characteristics in broadening the applications of ChlF measurements in plant analysis and offers a way to mitigate variabilities in ChlF measurements during strong actinic illumination. -
Evaluation of photosynthetic quantum yield is important for analyzing the phenotype of plants. Chlorophyll a fluorescence (ChlF) has been widely used to estimate plant photosynthesis and its regulatory mechanisms. The ratio of variable to maximum fluorescence, F v / F m , obtained from a ChlF induction curve, is commonly used to reflect the maximum photochemical quantum yield of photosystem II (PSII), but it is measured after a sample is dark-adapted for a long time, which limits its practical use. In this research, a least-squares support vector machine (LSSVM) model was developed to explore whether F v / F m can be determined from ChlF induction curves measured without dark adaptation. A total of 7,231 samples of 8 different experiments, under diverse conditions, were used to train the LSSVM model. Model evaluation with different samples showed excellent performance in determining F v / F m from ChlF signals without dark adaptation. Computation time for each test sample was less than 4 ms. Further, the prediction performance of test dataset was found to be very desirable: a high correlation coefficient (0.762 to 0.974); a low root mean squared error (0.005 to 0.021); and a residual prediction deviation of 1.254 to 4.933. These results clearly demonstrate that F v / F m , the widely used ChlF induction feature, can be determined from measurements without dark adaptation of samples. This will not only save experiment time but also make F v / F m useful in real-time and field applications. This work provides a high-throughput method to determine the important photosynthetic feature through ChlF for phenotyping plants.more » « less
-
With ongoing colony losses driven in part by the Varroa mite and the associated exacerbation of the virus load, there is an urgent need to protect honey bees (Apis mellifera) from fatal levels of virus infection and from the non-target effects of insecticides used in agricultural settings. A continuously replicating cell line derived from the honey bee would provide a valuable tool for the study of molecular mechanisms of virus–host interaction, for the screening of antiviral agents for potential use within the hive, and for the assessment of the risk of current and candidate insecticides to the honey bee. However, the establishment of a continuously replicating honey bee cell line has proved challenging. Here, we provide an overview of attempts to establish primary and continuously replicating hymenopteran cell lines, methods (including recent results) of establishing honey bee cell lines, challenges associated with the presence of latent viruses (especially Deformed wing virus) in established cell lines and methods to establish virus-free cell lines. We also describe the potential use of honey bee cell lines in conjunction with infectious clones of honey bee viruses for examination of fundamental virology.more » « less
-
ABSTRACT The endosomal sorting complex required for transport (ESCRT) machinery is necessary for budding of many enveloped viruses. Recently, it was demonstrated that Vps4, the key regulator for recycling of the ESCRT-III complex, is required for efficient infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, ESCRT assembly, regulation, and function are complex, and little is known regarding the details of participation of specific ESCRT complexes in AcMNPV infection. In this study, the core components of ESCRT-I (Tsg101 and Vps28) and ESCRT-III (Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60) were cloned from Spodoptera frugiperda . Using a viral complementation system and RNA interference (RNAi) assays, we found that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. In cells knocking down or overexpressing dominant negative (DN) forms of the components of ESCRT-I and ESCRT-III complexes, entering virions were partially trapped within the cytosol. To examine only egress, cells were transfected with the double-stranded RNA (dsRNA) targeting an individual ESCRT-I or ESCRT-III gene and viral bacmid DNA or viral bacmid DNA that expressed DN forms of ESCRT-I and ESCRT-III components. We found that ESCRT-III components (but not ESCRT-I components) are required for efficient nuclear egress of progeny nucleocapsids. In addition, we found that several baculovirus core or conserved proteins (Ac11, Ac76, Ac78, GP41, Ac93, Ac103, Ac142, and Ac146) interact with Vps4 and components of ESCRT-III. We propose that these viral proteins may form an “egress complex” that is involved in recruiting ESCRT-III components to a virus egress domain on the nuclear membrane. IMPORTANCE The ESCRT system is hijacked by many enveloped viruses to mediate budding and release. Recently, it was found that Vps4, the key regulator of the cellular ESCRT machinery, is necessary for efficient entry and egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, little is known about the roles of specific ESCRT complexes in AcMNPV infection. In this study, we demonstrated that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. The components of ESCRT-III (but not ESCRT-I) are also necessary for efficient nuclear egress of progeny nucleocapsids. Several baculovirus core or conserved proteins were found to interact with Vps4 and components of ESCRT-III, and these interactions may suggest the formation of an “egress complex” involved in the nuclear release or transport of viral nucleocapsids.more » « less
-
ABSTRACT In eukaryotic cells, the s oluble N -ethylmaleimide- s ensitive f actor (NSF) a ttachment protein re ceptor (SNARE) proteins comprise the minimal machinery that triggers fusion of transport vesicles with their target membranes. Comparative studies revealed that genes encoding the components of the SNARE system are highly conserved in yeast, insect, and human genomes. Upon infection of insect cells by the virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the transcript levels of most SNARE genes initially were upregulated. We found that overexpression of dominant-negative (DN) forms of NSF or knockdown of the expression of NSF, the key regulator of the SNARE system, significantly affected infectious AcMNPV production. In cells expressing DN NSF, entering virions were trapped in the cytoplasm or transported to the nucleus with low efficiency. The presence of DN NSF also moderately reduced trafficking of the viral envelope glycoprotein GP64 to the plasma membrane but dramatically inhibited production of infectious budded virions (BV). Transmission electron microscopy analysis of infections in cells expressing DN NSF revealed that progeny nucleocapsids were retained in a perinuclear space surrounded by inner and outer nuclear membranes. Several baculovirus conserved (core) proteins (Ac76, Ac78, GP41, Ac93, and Ac103) that are important for infectious budded virion production were found to associate with NSF, and NSF was detected within the assembled BV. Together, these data indicate that the cellular SNARE system is involved in AcMNPV infection and that NSF is required for efficient entry and nuclear egress of budded virions of AcMNPV. IMPORTANCE Little is known regarding the complex interplay between cellular factors and baculoviruses during viral entry and egress. Here, we examined the cellular SNARE system, which mediates the fusion of vesicles in healthy cells, and its relation to baculovirus infection. Using a DN approach and RNA interference knockdown, we demonstrated that a general disruption of the SNARE machinery significantly inhibited the production of infectious BV of AcMNPV. The presence of a DN NSF protein resulted in low-efficiency entry of BV and the retention of progeny nucleocapsids in the perinuclear space during egress. Combined with these effects, we also found that several conserved (core) baculovirus proteins closely associate with NSF, and these results suggest their involvement in the egress of BV. Our findings are the first to demonstrate that the SNARE system is required for efficient entry of BV and nuclear egress of progeny nucleocapsids of baculoviruses.more » « less