Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Abelló, A; Vassiliadis, P; Romero, O; Wrembel, R; Bugiotti, F; Gamper, J; Vargas-Solar, G; Zumpano, E (Ed.)Constructing knowledge graphs from heterogeneous data sources and evaluating their quality and consistency are important research questions in the field of knowledge graphs. We propose mapping rules to guide users to translate data from relational and graph sources into a meaningful knowledge graph and design a user-friendly language to specify the mapping rules. Given the mapping rules and constraints on source data, equivalent constraints on the target graph can be inferred, which is referred to as data source constraints. Besides this type of constraint, we design other two types: user-specified constraints and general rules that a high-quality knowledge graph should adhere to. We translate the three types of constraints into uniform expressions in the form of graph functional dependencies and extended graph dependencies, which can be used for consistency checking. Our approach provides a systematic way to build and evaluate knowledge graphs from diverse data sources.more » « less
-
The successes of reinforcement learning in recent years are underpinned by the characterization of suitable reward functions. However, in settings where such rewards are non-intuitive, difficult to define, or otherwise error-prone in their definition, it is useful to instead learn the reward signal from expert demonstrations. This is the crux of inverse reinforcement learning (IRL). While eliciting learning requirements in the form of scalar reward signals has been shown to be effective, such representations lack explainability and lead to opaque learning. We aim to mitigate this situation by presenting a novel IRL method for eliciting declarative learning requirements in the form of a popular formal logic---Linear Temporal Logic (LTL)---from a set of traces given by the expert policy.more » « less