skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Plasmons in the Kagome metal CsV3Sb5
Abstract Plasmon polaritons, or plasmons, are coupled oscillations of electrons and electromagnetic fields that can confine the latter into deeply subwavelength scales, enabling novel polaritonic devices. While plasmons have been extensively studied in normal metals or semimetals, they remain largely unexplored in correlated materials. In this paper, we report infrared (IR) nano-imaging of thin flakes of CsV3Sb5, a prototypical layered Kagome metal. We observe propagating plasmon waves in real-space with wavelengths tunable by the flake thickness. From their frequency-momentum dispersion, we infer the out-of-plane dielectric function$${{{{{{\boldsymbol{\epsilon }}}}}}}_{{{{{{\boldsymbol{c}}}}}}}$$ ϵ c that is generally difficult to obtain in conventional far-field optics, and elucidate signatures of electronic correlations when compared to density functional theory (DFT). We propose correlation effects might have switched the real part of$${{{{{{\boldsymbol{\epsilon }}}}}}}_{{{{{{\boldsymbol{c}}}}}}}$$ ϵ c from negative to positive values over a wide range of middle-IR frequencies, transforming the surface plasmons into hyperbolic bulk plasmons, and have dramatically suppressed their dissipation.  more » « less
Award ID(s):
2145074
PAR ID:
10589869
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers$${\boldsymbol{(}}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{7}}}{\boldsymbol{\lesssim }}{\bf{Re}}{\boldsymbol{\lesssim }}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{3}}}{\boldsymbol{)}}$$ ( 10 7 Re 10 3 ) . Fluid drag is conceptualized via a critical Reynolds number:$${\bf{Re}}{\boldsymbol{=}}\frac{{{\bf{v}}}_{{\bf{0}}}{{\bf{x}}}_{{\bf{0}}}}{{\boldsymbol{\nu }}}$$ Re = v 0 x 0 ν , wherev0corresponds to the maximum wetting speed on a flat, dry surface andx0is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction withv0andx0measurements using Water$${\boldsymbol{(}}{{\bf{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{25}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{28}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ ( v 0 2 m / s , 25 µ m x 0 28 µ m ) , viscous FC-70$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{0.3}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{18.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\boldsymbol{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{38.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ ( v 0 0.3 m / s , 18.6 µ m x 0 38.6 µ m ) and lower viscosity Ethanol$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{1.2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{11.8}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{33.3}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$ ( v 0 1.2 m / s , 11.8 µ m x 0 33.3 µ m )
    more » « less
  2. Abstract We construct a new one-parameter family, indexed by$$\epsilon $$ ϵ , of two-ended, spatially-homogeneous black hole interiors solving the Einstein–Maxwell–Klein–Gordon equations with a (possibly zero) cosmological constant$$\Lambda $$ Λ and bifurcating off a Reissner–Nordström-(dS/AdS) interior ($$\epsilon =0$$ ϵ = 0 ). For all small$$\epsilon \ne 0$$ ϵ 0 , we prove that, although the black hole is charged, its terminal boundary is an everywhere-spacelikeKasner singularity foliated by spheres of zero radiusr. Moreover, smaller perturbations (i.e. smaller$$|\epsilon |$$ | ϵ | ) aremore singular than larger ones, in the sense that the Hawking mass and the curvature blow up following a power law of the form$$r^{-O(\epsilon ^{-2})}$$ r - O ( ϵ - 2 ) at the singularity$$\{r=0\}$$ { r = 0 } . This unusual property originates from a dynamical phenomenon—violent nonlinear collapse—caused by the almost formation of a Cauchy horizon to the past of the spacelike singularity$$\{r=0\}$$ { r = 0 } . This phenomenon was previously described numerically in the physics literature and referred to as “the collapse of the Einstein–Rosen bridge”. While we cover all values of$$\Lambda \in \mathbb {R}$$ Λ R , the case$$\Lambda <0$$ Λ < 0 is of particular significance to the AdS/CFT correspondence. Our result can also be viewed in general as a first step towards the understanding of the interior of hairy black holes. 
    more » « less
  3. Abstract We study the interior of black holes in the presence of charged scalar hair of small amplitude$$\epsilon $$ ϵ on the event horizon and show their terminal boundary is a crushing Kasner-like singularity. These spacetimes are spherically symmetric, spatially homogeneous and they differ significantly from the hairy black holes with uncharged matter previously studied in[M. Van de Moortel, Violent nonlinear collapse inside charged hairy black holes, Arch. Rational. Mech. Anal., 248, 89, 2024]in that the electric field is dynamical and subject to the backreaction of charged matter. We prove this charged backreaction causes drastically different dynamics compared to the uncharged case that ultimately impact the formation of the spacelike singularity, exhibiting novel phenomena such asCollapsed oscillations: oscillatory growth of the scalar hair, nonlinearly induced by the collapseAfluctuating collapse: The final Kasner exponents’ dependency in$$\epsilon $$ ϵ is via an expression of the form$$|\sin \left( \omega _0 \cdot \epsilon ^{-2}+ O(\log (\epsilon ^{-1}))\right) |$$ | sin ω 0 · ϵ - 2 + O ( log ( ϵ - 1 ) ) | .AKasner bounce: a transition from an unstable Kasner metric to a different stable Kasner metricThe Kasner bounce occurring in our spacetime is reminiscent of the celebrated BKL scenario in cosmology. We additionally propose a construction indicating the relevance of the above phenomena – including Kasner bounces – to spacelike singularities inside more general (asymptotically flat) black holes, beyond the hairy case. While our result applies to all values of$$\Lambda \in \mathbb {R}$$ Λ R , in the$$\Lambda <0$$ Λ < 0 case, our spacetime corresponds to the interior region of a charged asymptotically Anti-de-Sitter stationary black hole, also known as aholographic superconductorin high-energy physics, and whose exterior region was rigorously constructed in the recent mathematical work [W. Zheng,Asymptotically Anti-de Sitter Spherically Symmetric Hairy Black Holes, arXiv.2410.04758]. 
    more » « less
  4. Abstract Given integers$$n> k > 0$$ n > k > 0 , and a set of integers$$L \subset [0, k-1]$$ L [ 0 , k - 1 ] , anL-systemis a family of sets$$\mathcal {F}\subset \left( {\begin{array}{c}[n]\\ k\end{array}}\right) $$ F [ n ] k such that$$|F \cap F'| \in L$$ | F F | L for distinct$$F, F'\in \mathcal {F}$$ F , F F .L-systems correspond to independent sets in a certain generalized Johnson graphG(n, k, L), so that the maximum size of anL-system is equivalent to finding the independence number of the graphG(n, k, L). TheLovász number$$\vartheta (G)$$ ϑ ( G ) is a semidefinite programming approximation of the independence number$$\alpha $$ α of a graphG. In this paper, we determine the leading order term of$$\vartheta (G(n, k, L))$$ ϑ ( G ( n , k , L ) ) of any generalized Johnson graph withkandLfixed and$$n\rightarrow \infty $$ n . As an application of this theorem, we give an explicit construction of a graphGonnvertices with a large gap between the Lovász number and the Shannon capacityc(G). Specifically, we prove that for any$$\epsilon > 0$$ ϵ > 0 , for infinitely manynthere is a generalized Johnson graphGonnvertices which has ratio$$\vartheta (G)/c(G) = \Omega (n^{1-\epsilon })$$ ϑ ( G ) / c ( G ) = Ω ( n 1 - ϵ ) , which improves on all known constructions. The graphGa fortiorialso has ratio$$\vartheta (G)/\alpha (G) = \Omega (n^{1-\epsilon })$$ ϑ ( G ) / α ( G ) = Ω ( n 1 - ϵ ) , which greatly improves on the best known explicit construction. 
    more » « less
  5. Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ M C n into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ H N with signatures$$ \ell \le (n-1)/2 $$ ( n - 1 ) / 2 and$$ \ell '\le (N-1)/2,$$ ( N - 1 ) / 2 , respectively. Assuming that$$ N - n < n - 1,$$ N - n < n - 1 , we prove that if$$ \ell = \ell ',$$ = , thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ H N at every point of$$ M_{\ell },$$ M , or it maps a neighborhood of$$ M_{\ell } $$ M in$$ {\mathbb {C}}^n $$ C n into$$ {\mathbb {H}}_{\ell }^N.$$ H N . Furthermore, in the case where$$ \ell ' > \ell ,$$ > , we show that ifFis not CR transversal at$$0\in M_\ell ,$$ 0 M , then it must be transversally flat. The latter is best possible. 
    more » « less