skip to main content


Search for: All records

Creators/Authors contains: "Gupta, Ankur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 9, 2025
  2. Free, publicly-accessible full text available January 11, 2025
  3. Diffusiophoresis involves the movement of colloidal-scale entities in response to concentration gradients of a solute. It is broadly categorized into two types: passive and active diffusiophoresis. In passive diffusiophoresis, external concentration gradients drive the motion, while in active diffusiophoresis, the colloidal entity itself assists in generating the gradients. In this perspective, we delve into the fundamental processes underlying passive and active diffusiophoresis and emphasize how prevalent both kinds of diffusiophoresis are in colloidal and natural systems. In particular, we highlight the colloidal focusing feature in passive diffusiophoresis and discuss how it underpins the variety of experimental observations and applications such as low-cost zetasizers, water filtration, and biological pattern formation. For active diffusiophoresis, we emphasize the dependence of particle trajectory on its shape and surface heterogeneity, and discuss how this dictates the applications such as drug delivery, removal of microplastics, and self-repairing materials. Finally, we offer insights and ideas regarding future opportunities in diffusiophoresis.

     
    more » « less
    Free, publicly-accessible full text available November 30, 2024
  4. Turing patterns are fundamental in biophysics, emerging from short-range activation and long-range inhibition processes. However, their paradigm is based on diffusive transport processes that yield patterns with shallower gradients than those observed in nature. A complete physical description of this discrepancy remains unknown. We propose a solution to this phenomenon by investigating the role of diffusiophoresis, which is the propulsion of colloids by a chemical gradient, in Turing patterns. Diffusiophoresis enables robust patterning of colloidal particles with substantially finer length scales than the accompanying chemical Turing patterns. A scaling analysis and a comparison to recent experiments indicate that chromatophores, ubiquitous in biological pattern formation, are likely diffusiophoretic and the colloidal Péclet number controls the pattern enhancement. This discovery suggests that important features of biological pattern formation can be explained with a universal mechanism that is quantified straightforwardly from the fundamental physics of colloids.

     
    more » « less
    Free, publicly-accessible full text available November 10, 2024
  5. Swimming at the microscale typically involves two modes of motion: mechanical propulsion and propulsion due to field interactions. During mechanical propulsion, particles swim by reconfiguring their geometry. When propelled by field interactions, body forces such as phoretic interactions drive mobility. In this work, we employ slender-body theory to explore how a bent rod actuator propels due to a mechanical mode of swimming via hinge articulations and due to a chemical mode of swimming via diffusiophoretic interactions with a solute field. Although previous theoretical studies have examined mechanical and chemical modes of swimming in isolation, the simultaneous investigation of both modes has remained unexplored. For the mechanical mode of swimming, our calculations, both numerical and analytical, recover Purcell’s scallop theorem and show that the bent rod actuator experiences zero net displacement during reciprocal motion. Additionally, we calculate the trajectories traced by a bent rod actuator under a non-reciprocal hinge articulation, revealing that these trajectories are influenced by the amplitude of the hinge articulation, geometric asymmetry, and the angular velocity distribution between the two arms of the bent rod actuator. We provide intuitive explanations for these effects using free-body diagrams. Furthermore, we explore the motion induced by simultaneous hinge articulations and self-diffusiophoresis. We observe that hinge articulations can modify the effective phoretic forces and torques acting on the bent rod actuator, either supporting or impeding propulsion. Additionally, during self-diffusiophoretic propulsion, reciprocal hinge articulations no longer result in zero net displacement. In summary, our findings chart a new direction for designing micron-sized objects that harness both mechanical and chemical modes of propulsion synchronously, offering a mechanism to enact control over trajectories.

     
    more » « less
    Free, publicly-accessible full text available December 18, 2024
  6. Recent experimental studies have utilized AC electric fields and electrochemical reactions in multicomponent electrolyte solutions to control colloidal assembly. However, theoretical investigations have thus far been limited to binary electrolytes and have overlooked the impact of electrochemical reactions. In this study, we address these limitations by analyzing a system with multicomponent electrolytes, while also relaxing the assumption of ideally blocking electrodes to capture the effect of surface electrochemical reactions. Through a regular perturbation analysis in the low-applied-potential regime, we solve the Poisson–Nernst–Planck equations and obtain effective equations for electrical potential and ion concentrations. By employing a combination of numerical and analytical calculations, our analysis reveals a significant finding: electrochemical reactions alone can generate asymmetric rectified electric fields (AREFs), i.e., time-averaged, long-range electric fields, even when the diffusivities of the ionic species are equal. This finding expands our understanding beyond the conventional notion that AREFs arise solely from diffusivity contrast. Furthermore, we demonstrate that AREFs induced by electrochemical reactions can be stronger than those resulting from asymmetric diffusivities. Additionally, we report the emergence of asymmetric rectified concentration fields (ARCFs), i.e., time-averaged, long-range concentration fields, which supports the electrodiffusiophoresis mechanism of colloidal assembly observed in experiments. We also derive analytical expressions for AREFs and ARCFs, emphasizing the role of imbalances in ionic strength and charge density, respectively, as the driving forces behind their formation. The results presented in this article advance the field of colloidal assembly and also have implications for improved understanding of electrolyte transport in electrochemical devices.

     
    more » « less
    Free, publicly-accessible full text available August 9, 2024
  7. Active particles, or micromotors, locally dissipate energy to drive locomotion at small length scales. The type of trajectory is generally fixed and dictated by the geometry and composition of the particle, which can be challenging to tune using conventional fabrication procedures. Here, we report a simple, bottom-up method to magnetically assemble gold-coated polystyrene Janus particles into “locked” clusters that display diverse trajectories when stimulated by AC electric fields. The orientation of particles within each cluster gives rise to distinct modes of locomotion, including translational, rotational, trochoidal, helical, and orbital. We model this system using a simplified rigid beads model and demonstrate qualitative agreement between the predicted and experimentally observed cluster trajectories. Overall, this system provides a facile means to scalably create micromotors with a range of well-defined motions from discrete building blocks. 
    more » « less
    Free, publicly-accessible full text available October 20, 2024
  8. Free, publicly-accessible full text available October 1, 2024
  9. Diffusiophoresis refers to the phenomenon where colloidal particles move in response to solute concentration gradients. Existing studies on diffusiophoresis, both experimental and theoretical, primarily focus on the movement of colloidal particles in response to one-dimensional solute gradients. In this work, we numerically investigate the impact of two-dimensional solute gradients on the distribution of colloidal particles, i.e. , colloidal banding, induced via diffusiophoresis. The solute gradients are generated by spatially arranged sources and sinks that emit/absorb a time-dependent solute molar rate. First we study a dipole system, i.e. , one source and one sink, and discover that interdipole diffusion and molar rate decay timescales dictate colloidal banding. At timescales shorter than the interdipole diffusion timescale, we observe a rapid enhancement in particle enrichment around the source due to repulsion from the sink. However, at timescales longer than the interdipole diffusion timescale, the source and sink screen each other, leading to a slower enhancement. If the solute molar rate decays at the timescale of interdipole diffusion, an optimal separation distance is obtained such that particle enrichment is maximized. We find that the partition coefficient of solute at the interface between the source and bulk strongly impacts the optimal separation distance. Surprisingly, the diffusivity ratio of solute in the source and bulk has a much weaker impact on the optimal dipole separation distance. We also examine an octupole configuration, i.e. , four sinks and four sources, arranged in a circle, and demonstrate that the geometric arrangement that maximizes enrichment depends on the radius of the circle. If the radius of the circle is small, it is preferred to have sources and sinks arranged in an alternating fashion. However, if the radius of the circle is large, a consecutive arrangement of sources and sinks is optimal. Our numerical framework introduces a novel method for spatially and temporally designing the banded structure of colloidal particles in two dimensions using diffusiophoresis and opens up new avenues in a field that has primarily focused on one-dimensional solute gradients. 
    more » « less