Nanoporous carbons play an important role in different electrochemical applications such as being utilized as electrodes in supercapacitors. Application of electric potential to a porous electrode in electrolyte solution stimulates adsorption or desorption of ions on the electrode surface. Electrosorption causes appearance of solvation pressure in the pores and results in electrode deformation. In this work, using molecular dynamics simulations and the continuum theory based on the modified Poisson-Boltzmann equation, we studied the structure of the electrical double layer in slit graphitic micropores filled with a NaCl aqueous solution, and solvation pressure in these pores. We focused on the behavior of the solvation pressure as a function of pore width and surface charge density. Within molecular dynamics simulations, two different water models were used -- an explicit model based on SPC/E water molecules and an implicit model, i.e., structureless background with fixed dielectric permittivity. The latter allows us to relate molecular dynamics simulations to the continuum theory. Simulations with explicit water show a qualitatively different behavior of the solvation pressure in the 1 and 2 nm pores as a function of the surface charge density. We demonstrated that the value of the solvation pressure is defined by a delicate balance between Van der Waals and electrostatic contributions. We demonstrated that the theory predicts the dependence of the solvation pressure on the pore width, which matches the results of simulations using the implicit water model. Finally, we adapted the continuum theory, developed for adsorption-induced deformation to estimate the deformation of a carbon electrode due to electrosorption. Our results can be used in the further development of nanoporous actuators working based on electrosorption-induced deformation.
more »
« less
A network model to predict ionic transport in porous materials
Understanding the dynamics of electric-double-layer (EDL) charging in porous media is essential for advancements in next-generation energy storage devices. Due to the high computational demands of direct numerical simulations and a lack of interfacial boundary conditions for reduced-order models, the current understanding of EDL charging is limited to simple geometries. Here, we present a network model to predict EDL charging in arbitrary networks of long pores in the Debye–Hückel limit without restrictions on EDL thickness and pore radii. We demonstrate that electrolyte transport is described by Kirchhoff’s laws in terms of the electrochemical potential of charge (the valence-weighted average of the ion electrochemical potentials) instead of the electric potential. By employing the equivalent circuit representation suggested by these modified Kirchhoff’s laws, our methodology accurately captures the spatial and temporal dependencies of charge density and electric potential, matching results obtained from computationally intensive direct numerical simulations. Our network model provides results up to six orders of magnitude faster, enabling the efficient simulation of a triangular lattice of five thousand pores in 6 min. We employ the framework to study the impact of pore connectivity and polydispersity on electrode charging dynamics for pore networks and discuss how these factors affect the time scale, energy density, and power density of capacitive charging. The scalability and versatility of our methodology make it a rational tool for designing 3D-printed electrodes and for interpreting geometric effects on electrode impedance spectroscopy measurements.
more »
« less
- Award ID(s):
- 2238412
- PAR ID:
- 10566438
- Publisher / Repository:
- United States National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 22
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lithium-ion batteries (LIBs) have solidified their position as primary energy storage solutions for applications ranging from portable electronics to electric vehicles. As power-intensive applications expand, achieving fast charging/discharging performance is increasingly critical for high-energy-density batteries. However, the increased thickness of electrodes in LIBs presents significant challenges for charge (Li⁺ and electron) transfer kinetics, as longer charge migration distances hinder fast charging and discharging performance. Enormous efforts have been made to summarize advancements in materials chemistry—optimizing ionic pathways and crystal structure—to enhance Li⁺ transfer within the bulk of electrode materials. Yet, materials design and modifications fall short of fully addressing Li+and electron transport limitations in thick electrodes. Despite the significance of potentially offering a solution to these constraints, the strategic engineering of electrode architecture has been rarely discussed. In this mini-review, we highlight recent innovations in electrode structural design for fast-charging applications, examining gradient architectures, low-tortuosity structures, and novel current collector designs. By exploring these advanced approaches and offering perspectives on future developments, we aim to promote further advancements toward achieving high-energy-density, fast-charging LIBs.more » « less
-
Carbon slurries have been used as “flowable electrodes” in various electrochemical systems, and the slurry flow characteristics play an important role in the system electrochemical performance. For example, in an electrochemical flow capacitor (EFC), activated carbon particles must pass electrical charge from a stationary electrode to surrounding particles via particle-electrode and particle–particle interactions to store energy in the electric double layer. So far, particle behaviors under a continuous flow condition have not been observed due to the slurry's opacity, and studies of the device's performance thus have been mainly on a bulk level. To understand the relation between the hydrodynamic behavior and the electrochemical performance of carbon slurries, we have constructed a microfluidic EFC (μ-EFC) using transparent materials. The μ-EFC allows for direct observation of particle interactions in flowing carbon slurries using high-speed camera recording, and concurrent measurements of the electrochemical performance via chronoamperometry. The results indicate an interesting dependence of the particle cluster interaction on the flowrate, and its effect on the slurry charging/discharging behavior. It is found that an optimal flowrate could exist for better electrochemical performance.more » « less
-
null (Ed.)The ability to control the charge density of organic mixed ionic electronic conductors (OMIECs) via reactions with redox-active analytes has enabled applications as electrochemical redox sensors. Their charge density-dependent conductivity can additionally be tuned via charge injection from electrodes, for instance in organic electrochemical transistors (OECTs), where volumetric charging of the OMIEC channel enables excellent transconductance and amplification of low potentials. Recent efforts have combined the chemical detection with the transistor function of OECTs to achieve compact electrochemical sensors. However, these sensors often fall short of the expected amplification performance of OECTs. Here, we investigate the operation mechanism of various OECT architectures to deduce the design principles required to achieve reliable chemical detection and signal amplification. By utilizing a non-polarizable gate electrode and conducting the chemical reaction in a compartment separate from the OECT, the recently developed Reaction Cell OECT achieves reliable modulation of the OECT channel's charge density. This work demonstrates that systematic and rational design of OECT chemical sensors requires understanding the electrochemical processes that result in changes in the potential (charge density) of the channel, the underlying phenomenon behind amplification.more » « less
-
A mechanism for the concerted pathway of coupled electron- and phase-transfer reactions (CEPhT) is proposed. CEPhT at three-phase interfaces formed by a solid electrode, an insulating organic solvent, and an aqueous electrolyte is driven by electric double layer (EDL) spillover, with significant electrostatic potential gradients extending a few nanometers into the insulating phase. This EDL spillover phenomenon is studied using scanning electrochemical cell microscopy to interrogate the oxidation of ferrocene in toluene to ferrocenium in water, (Fc)tol → (Fc+)aq + e–. Finite element method simulations of the electrostatic potential distribution and species concentration profiles enable the calculation of complete i–E curves that incorporate mass transport, electron transfer, phase transfer, and the EDL structure. Simulated and experimental i–E traces show good agreement in the current magnitude and the effect of the supporting electrolyte, identifying an unexpected dependence of overall reaction kinetics on the concentration of the supporting electrolyte in the aqueous phase due to EDL spillover. An interfacial toluene/water mixing region generates a unique electrochemical microenvironment where concerted electron transfer and solvent shell replacement facilitate CEPhT. Kinetic expressions for concerted and sequential CEPhT mechanisms highlight the role of this interfacial environment in controlling the rate of CEPhT. These combined experimental and simulated results are the first to support a concerted mechanism for CEPhT where (Fc)tol is transported to the interfacial mixing region at the three-phase interface, where it undergoes oxidation and phase transfer. EDL spillover can be leveraged for engineering sample geometries and electrostatic microenvironments to drive electrochemical reactivity in classically forbidden regions, e.g., insulating solvents and gases.more » « less
An official website of the United States government

