This paper presents the findings of action research conducted to evaluate new modules created to teach learners how to apply machine learning (ML) and artificial intelligence (AI) techniques to malware data sets. The trend in the data suggest that learners with cybersecurity competencies may be better prepared to complete the AI/ML modules’ exercises than learners with AI/ML competencies. We describe the challenge of identifying prerequisites that could be used to determine learner readiness, report our findings, and conclude with the implications for instructional design and teaching practice.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 27, 2025
-
Free, publicly-accessible full text available February 1, 2025
-
Free, publicly-accessible full text available February 1, 2025
-
Free, publicly-accessible full text available December 15, 2024
-
Free, publicly-accessible full text available November 14, 2024
-
Free, publicly-accessible full text available November 1, 2024
-
The unauthorized usage of various services and resources in cloud computing is something that must be protected against. Authentication and access control are the most significant concerns in cloud computing. Several researchers in this field suggest numerous approaches to enhance cloud authentication towards robustness. User names and associated passwords have been a common practice for long as Single Factor Authentication. However, advancements in the speed of computing and the usage of simple methods, starting from the Brute Force technique to the implementation of advanced and efficient crytographic algorithms, have posed several threats and vulnerabilities for authentication systems, leading to the degradation of their effectiveness. Multi-factor authentication has emerged as a robust means of securing the cloud using simultaneous and multiple means of authentication factors. This employs multiple levels of cascaded authentication checks. This paper covers an extensive and systematic survey of various factors towards their adoption and suitability for authentication for multi-factor authentication mechanisms. The inference drawn from the survey is in terms of arriving at a unique authentication factor that does not require any additional, specialized hardware or software for multi-factor authentication. Such authentication also uses the distinct biometric characteristics of the concerned user in the process. This arrangement augments the secured and robust user authentication process. The mechanism is also assessed as an effective means against impersonation attacks.more » « less