Caribou (Rangifer tarandus) undergo exceptionally large, annual synchronized migrations of thousands of kilometers, triggered by their shared environmental stimuli. The proximate triggers of those migrations remain mysterious, though snow characteristics play an important role due to their influence on the mechanics of locomotion. We investigate whether the snow melt–refreeze status relates to caribou movement, using previously collected Global Positioning System (GPS) caribou collar data. We analyzed 117 individual female caribou with >30,000 observations between 2007 and 2016 from the Bathurst herd in Northern Canada. We used a hierarchical model to estimate the beginning, duration, and end of spring migration and compared these statistics against snow pack melt characteristics derived from 37 GHz vertically polarized (37V GHz) Calibrated Enhanced-Resolution Brightness Temperatures (CETB) at 3.125 km resolution. The timing of migration for Bathurst caribou generally tracked the snowmelt onset. The start of migration was closely linked to the main melt onset in the wintering areas, occurring on average 2.6 days later (range −1.9 to 8.4, se 0.28, n = 10). The weighted linear regression was also highly significant (p-value = 0.002, R2=0.717). The relationship between migration arrival times and the main melt onset on the calving grounds (R2 = 0.688, p-value = 0.003), however, had a considerably more variable lag (mean 13.3 d, se 0.67, range 3.1–20.4). No migrations ended before the main melt onset at the calving grounds. Thawing conditions may provide a trigger for migration or favorable conditions that increase animal mobility, and suggest that the snow properties are more important than snow presence. Further work is needed to understand how widespread this is and why there is such a relationship.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2025
-
Free, publicly-accessible full text available January 31, 2025
-
Abstract Consumers must track and acquire resources in complex landscapes. Much discussion has focused on the concept of a ‘resource gradient’ and the mechanisms by which consumers can take advantage of such gradients as they navigate their landscapes in search of resources. However, the concept of tracking resource gradients means different things in different contexts. Here, we take a synthetic approach and consider six different definitions of what it means to search for resources based on density or gradients in density. These include scenarios where consumers change their movement behavior based on the density of conspecifics, on the density of resources, and on spatial or temporal gradients in resources. We also consider scenarios involving non-local perception and a form of memory. Using a continuous space, continuous time model that allows consumers to switch between resource-tracking and random motion, we investigate the relative performance of these six different strategies. Consumers’ success in matching the spatiotemporal distributions of their resources differs starkly across the six scenarios. Movement strategies based on perception and response to temporal (rather than spatial) resource gradients afforded consumers with the best opportunities to match resource distributions. All scenarios would allow for optimization of resource-matching in terms of the underlying parameters, providing opportunities for evolutionary adaptation, and links back to classical studies of foraging ecology.
-
The ability of wild animals to navigate and survive in complex and dynamic environments depends on their ability to store relevant information and place it in a spatial context. Despite the centrality of spatial memory, and given our increasing ability to observe animal movements in the wild, it is perhaps surprising how difficult it is to demonstrate spatial memory empirically. We present a cognitive analysis of movements of several wolves ( Canis lupus ) in Finland during a summer period of intensive hunting and den-centered pup-rearing. We tracked several wolves in the field by visiting nearly all GPS locations outside the den, allowing us to identify the species, location and timing of nearly all prey killed. We then developed a model that assigns a spatially explicit value based on memory of predation success and territorial marking. The framework allows for estimation of multiple cognitive parameters, including temporal and spatial scales of memory. For most wolves, fitted memory-based models outperformed null models by 20 to 50% at predicting locations where wolves chose to forage. However, there was a high amount of individual variability among wolves in strength and even direction of responses to experiences. Some wolves tended to return to locations with recent predation success—following a strategy of foraging site fidelity—while others appeared to prefer a site switching strategy. These differences are possibly explained by variability in pack sizes, numbers of pups, and features of the territories. Our analysis points toward concrete strategies for incorporating spatial memory in the study of animal movements while providing nuanced insights into the behavioral strategies of individual predators.more » « less
-
Seasonal migrations are a widespread and broadly successful strategy for animals to exploit periodic and localized resources over large spatial scales. It remains an open and largely case-specific question whether long-distance migrations are resilient to environmental disruptions. High levels of mobility suggest an ability to shift ranges that can confer resilience. On the other hand, a conservative, hard-wired commitment to a risky behavior can be costly if conditions change. Mechanisms that contribute to migration include identification and responsiveness to resources, sociality, and cognitive processes such as spatial memory and learning. Our goal was to explore the extent to which these factors interact not only to maintain a migratory behavior but also to provide resilience against environmental changes. We develop a diffusion-advection model of animal movement in which an endogenous migratory behavior is modified by recent experiences via a memory process, and animals have a social swarming-like behavior over a range of spatial scales. We found that this relatively simple framework was able to adapt to a stable, seasonal resource dynamic under a broad range of parameter values. Furthermore, the model was able to acquire an adaptive migration behavior with time. However, the resilience of the process depended on all the parameters under consideration, with many complex trade-offs. For example, the spatial scale of sociality needed to be large enough to capture changes in the resource, but not so large that the acquired collective information was overly diluted. A long-term reference memory was important for hedging against a highly stochastic process, but a higher weighting of more recent memory was needed for adapting to directional changes in resource phenology. Our model provides a general and versatile framework for exploring the interaction of memory, movement, social and resource dynamics, even as environmental conditions globally are undergoing rapid change.more » « less
-
null (Ed.)Integrating diverse concepts from animal behavior, movement ecology, and machine learning, we develop an overview of the ecology of learning and animal movement. Learning-based movement is clearly relevant to ecological problems, but the subject is rooted firmly in psychology, including a distinct terminology. We contrast this psychological origin of learning with the task-oriented perspective on learning that has emerged from the field of machine learning. We review conceptual frameworks that characterize the role of learning in movement, discuss emerging trends, and summarize recent developments in the analysis of movement data. We also discuss the relative advantages of different modeling approaches for exploring the learning-movement interface. We explore in depth how individual and social modalities of learning can matter to the ecology of animal movement, and highlight how diverse kinds of field studies, ranging from translocation efforts to manipulative experiments, can provide critical insight into the learning process in animal movement.more » « less