skip to main content


Title: Learning and Animal Movement
Integrating diverse concepts from animal behavior, movement ecology, and machine learning, we develop an overview of the ecology of learning and animal movement. Learning-based movement is clearly relevant to ecological problems, but the subject is rooted firmly in psychology, including a distinct terminology. We contrast this psychological origin of learning with the task-oriented perspective on learning that has emerged from the field of machine learning. We review conceptual frameworks that characterize the role of learning in movement, discuss emerging trends, and summarize recent developments in the analysis of movement data. We also discuss the relative advantages of different modeling approaches for exploring the learning-movement interface. We explore in depth how individual and social modalities of learning can matter to the ecology of animal movement, and highlight how diverse kinds of field studies, ranging from translocation efforts to manipulative experiments, can provide critical insight into the learning process in animal movement.  more » « less
Award ID(s):
1915347 1853465
PAR ID:
10281662
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Energy, nutrients and organisms move over landscapes, connecting ecosystems across space and time. Meta‐ecosystem theory investigates the emerging properties of local ecosystems coupled spatially by these movements of organisms and matter, by explicitly tracking exchanges of multiple substances across ecosystem borders. To date, meta‐ecosystem research has focused mostly on abiotic flows—neglecting biotic nutrient flows. However, recent work has indicated animals act as spatial nutrient vectors when they transport nutrients across landscapes in the form of excreta, egesta and their own bodies.

    Partly due to its high level of abstraction, there are few empirical tests of meta‐ecosystem theory. Furthermore, while animals may be viewed as important mediators of ecosystem functions, better integration of tools is needed to develop predictive insights of their relative roles and impacts on diverse ecosystems. We present a methodological roadmap that explains how to do such integration by discussing how to combine insights from movement, foraging and ecosystem ecology to develop a coherent understanding of animal‐vectored nutrient transport on meta‐ecosystems processes.

    We discuss how the slate of newly developed technologies and methods—tracking devices, mechanistic movement models, diet reconstruction techniques and remote sensing—that when integrated have the potential to advance the quantification of animal‐vectored nutrient flows and increase the predictive power of meta‐ecosystem theory.

    We demonstrate that by integrating novel and established tools of animal ecology, ecosystem ecology and remote sensing, we can begin to identify and quantify animal‐mediated nutrient translocation by large animals. We also provide conceptual examples that show how our proposed integration of methodologies can help investigate ecosystem impacts of large animal movement. We conclude by describing practical advancements to understanding cross‐ecosystem contributions of animals on the move.

    Understanding the mechanisms by which animals shape ecosystem dynamics is important for ongoing conservation, rewilding and restoration initiatives around the world, and for developing more accurate models of ecosystem nutrient budgets. Our roadmap will enable ecologists to better qualify and quantify animal‐mediated nutrient translocation for animals on the move.

     
    more » « less
  2. Abstract

    A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator–prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator–prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed.

     
    more » « less
  3. Abstract

    Rivers are efficient corridors for aquatic animals, primarily under the assumption of perennial flow. However, the recognition that river drying is a common and widespread phenomenon requires reexamining animal movement through river networks. Intermittent rivers and ephemeral streams have been overlooked when studying animal movement, even though approximately 60% of the global river network dries. In the present article, we extend the current focus of river ecology by integrating the effects of drying on the movement of aquatic and terrestrial animals. Moreover, we introduce a conceptual model that challenges the current bias, which is focused on perennial waterways, by encompassing animal movement across hydrologic phases (nonflowing, flowing, dry, rewetting) and habitats (aquatic, terrestrial). We discuss their corridor function in conservation and restoration planning and identify emerging research questions. We contend that a more comprehensive and inclusive view of animal movement in dry channels will advance ecological understanding of river networks and respective conservation efforts.

     
    more » « less
  4. Abstract

    Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.

     
    more » « less
  5. Seed dispersal, or the movement of diaspores away from the parent location, is a multiscale, multipartner process that depends on the interaction of plant life history with vector movement and the environment. Seed dispersal underpins many important plant ecological and evolutionary processes such as gene flow, population dynamics, range expansion, and diversity. We review exciting new directions that the field of seed dispersal ecology and evolution has taken over the past 40 years. We provide an overview of the ultimate causes of dispersal and the consequences of this important process for plant population and community dynamics. We also discuss several emergent unifying frameworks that are being used to study dispersal and describe how they can be integrated to provide a more mechanistic understanding of dispersal.

     
    more » « less