- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Amha, Yamrot M. (1)
-
Barigelli, Sofia (1)
-
Bartolo, Mitchel (1)
-
Bigler, Melina (1)
-
Cavallaro, Alessio (1)
-
Consortium, SARS-CoV-2 Interlaboratory (1)
-
Danielson, Richard (1)
-
Darby, Emily (1)
-
Dearborn, Yeggie (1)
-
Di Giovanni, George (1)
-
Eichelberg, Antonia (1)
-
Faucher, Sebastien P (1)
-
Ferguson, Christobel (1)
-
Fevig, Stephanie (1)
-
Füchslin, Hans P (1)
-
Gabrielli, Marco (1)
-
Gaddis, Erica (1)
-
Gaia, Valeria (1)
-
Gomez-Valero, Laura (1)
-
Gray, Donald (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The disease burden from Legionella spp. infections has been increasing in many industrialized countries and, despite decades of scientific advances, ranks amongst the highest for waterborne diseases. We review here several key research areas from a multidisciplinary perspective and list critical research needs to address some of the challenges of Legionella spp. management in engineered environments. These include: (i) a consideration of Legionella species diversity and cooccurrence, beyond Legionella pneumophila only; (ii) an assessment of their environmental prevalence and clinical relevance, and how that may affect legislation, management, and intervention prioritization; (iii) a consideration of Legionella spp. sources, their definition and prioritization; (iv) the factors affecting Legionnaires’ disease seasonality, how they link to sources, Legionella spp. proliferation and ecology, and how these may be affected by climate change; (v) the challenge of saving energy in buildings while controlling Legionella spp. with high water temperatures and chemical disinfection; and (vi) the ecological interactions of Legionella spp. with other microbes, and their potential as a biological control strategy. Ultimately, we call for increased interdisciplinary collaboration between multiple research domains, as well as transdisciplinary engagement and collaboration across government, industry, and science as the way toward controlling and reducing Legionella-derived infections.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Pecson, Brian M.; Darby, Emily; Haas, Charles N.; Amha, Yamrot M.; Bartolo, Mitchel; Danielson, Richard; Dearborn, Yeggie; Di Giovanni, George; Ferguson, Christobel; Fevig, Stephanie; et al (, Environmental Science: Water Research & Technology)In response to COVID-19, the international water community rapidly developed methods to quantify the SARS-CoV-2 genetic signal in untreated wastewater. Wastewater surveillance using such methods has the potential to complement clinical testing in assessing community health. This interlaboratory assessment evaluated the reproducibility and sensitivity of 36 standard operating procedures (SOPs), divided into eight method groups based on sample concentration approach and whether solids were removed. Two raw wastewater samples were collected in August 2020, amended with a matrix spike (betacoronavirus OC43), and distributed to 32 laboratories across the U.S. Replicate samples analyzed in accordance with the project's quality assurance plan showed high reproducibility across the 36 SOPs: 80% of the recovery-corrected results fell within a band of ±1.15 log 10 genome copies per L with higher reproducibility observed within a single SOP (standard deviation of 0.13 log 10 ). The inclusion of a solids removal step and the selection of a concentration method did not show a clear, systematic impact on the recovery-corrected results. Other methodological variations ( e.g. , pasteurization, primer set selection, and use of RT-qPCR or RT-dPCR platforms) generally resulted in small differences compared to other sources of variability. These findings suggest that a variety of methods are capable of producing reproducible results, though the same SOP or laboratory should be selected to track SARS-CoV-2 trends at a given facility. The methods showed a 7 log 10 range of recovery efficiency and limit of detection highlighting the importance of recovery correction and the need to consider method sensitivity when selecting methods for wastewater surveillance.more » « less
An official website of the United States government
