skip to main content


Search for: All records

Creators/Authors contains: "Hackshaw, Zoe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Chemical cartography of the Galactic disk provides insights into its structure and assembly history over cosmic time. In this work, we use chemical cartography to explore chemical gradients and azimuthal substructure in the Milky Way disk with giant stars from Apache Point Observatory Galactic Evolution Experiment (APOGEE) DR17. We confirm the existence of a radial metallicity gradient in the disk of Δ[Fe/H]/ΔR∼ –0.0678 ± 0.0004 dex kpc−1and a vertical metallicity gradient of Δ[Fe/H]/ΔZ∼ −0.164 ± 0.001. We find azimuthal variations (±0.1 dex) on top of the radial metallicity gradient that have been previously established with other surveys. The APOGEE giants show strong correlations with stellar age and the intensity of azimuthal variations in [Fe/H]; young populations and intermediate-aged populations both show significant deviations from the radial metallicity gradient, while older stellar populations show the largest deviations from the radial metallicity gradient. Beyond iron, we show that other elements (e.g., Mg, O) display azimuthal variations at the ±0.05 dex level across the Galactic disk. We illustrate that moving into the orbit-space could help constrain the mechanisms producing these azimuthal metallicity variations in the future. These results suggest that dynamical processes play an important role in the formation of azimuthal metallicity variations.

     
    more » « less
  2. Abstract

    We present the discovery of 2MASS J05241392−0336543 (hereafter J0524−0336), a very metal-poor ([Fe/H] = −2.43 ± 0.16), highlyr-process-enhanced ([Eu/Fe] = +1.34 ± 0.10) Milky Way halo field red giant star, with an ultrahigh Li abundance ofA(Li, 3D, NLTE) = 6.15 ± 0.25 and [Li/Fe] = +7.64 ± 0.25, respectively. This makes J0524−0336 the most lithium-enhanced giant star discovered to date. We present a detailed analysis of the star’s atmospheric stellar parameters and chemical abundance determinations. Additionally, we detect indications of infrared excess, as well as observe variable emission in the wings of the Hαabsorption line across multiple epochs, indicative of a potential enhanced mass-loss event with possible outflows. Our analysis reveals that J0524−0336 lies either between the bump and the tip of the red giant branch (RGB), or on the early asymptotic giant branch (e-AGB). We investigate the possible sources of lithium enrichment in J0524−0336, including both internal and external sources. Based on current models and on the observational evidence we have collected, our study shows that J0524−0336 may be undergoing the so-called lithium flash that is expected to occur in low-mass stars when they reach the RGB bump and/or the e-AGB.

     
    more » « less
  3. Abstract

    The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar-evolution models. The uranium abundance, which can be determined for metal-poorr-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used asingleUiiline atλ3859 Å. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel Uiilines atλ4050 Å andλ4090 Å, in addition to the canonicalλ3859 Å line. We find that the Uiilines atλ4050 Å andλ4090 Å are reliable and render U abundances in agreement with theλ3859 U abundance, for all of the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2–002333, HE 1523–0901, and CS 31082–001, using multiple Uiilines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early universe, especially ofr-process elements.

     
    more » « less