skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uranium Abundances and Ages of r-process Enhanced Stars with Novel U ii Lines*
Abstract The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar-evolution models. The uranium abundance, which can be determined for metal-poorr-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used asingleUiiline atλ3859 Å. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel Uiilines atλ4050 Å andλ4090 Å, in addition to the canonicalλ3859 Å line. We find that the Uiilines atλ4050 Å andλ4090 Å are reliable and render U abundances in agreement with theλ3859 U abundance, for all of the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2–002333, HE 1523–0901, and CS 31082–001, using multiple Uiilines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early universe, especially ofr-process elements.  more » « less
Award ID(s):
2205847 1815403 2206263
PAR ID:
10413656
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 122
Size(s):
Article No. 122
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present a detailed chemical-abundance analysis of a highly r-process-enhanced (RPE) star, 2MASS J00512646-1053170, using high-resolution spectroscopic observations with Hubble Space Telescope/STIS in the UV and Magellan/MIKE in the optical. We determined abundances for 41 elements in total, including 23 r-process elements and rarely probed species such as Al ii, Ge i, Mo ii, Cd i, Os ii, Pt i, and Au i. We find that [Ge/Fe] = +0.10, which is an unusually high Ge enhancement for such a metal-poor star and indicates contribution from a production mechanism decoupled from that of Fe. We also find that this star has the highest Cd abundance observed for a metal-poor star to date. We find that the dispersion in the Cd abundances of metal-poor stars can be explained by the correlation of Cd i abundances with the stellar parameters of the stars, indicating the presence of NLTE effects. We also report that this star is now only the sixth star with Au abundance determined. This result, along with abundances of Pt and Os, uphold the case for the extension of the universal r-process pattern to the third r-process peak and to Au. This study adds to the sparse but growing number of RPE stars with extensive chemical-abundance inventories and highlights the need for not only more abundance determinations of these rarely probed species, but also advances in theoretical NLTE and astrophysical studies to reliably understand the origin of r-process elements. 
    more » « less
  2. Abstract M15 is a globular cluster with a known spread in neutron-capture elements. This paper presents abundances of neutron-capture elements for 62 stars in M15. Spectra were obtained with the Michigan/Magellan Fiber System spectrograph, covering a wavelength range from ∼4430 to 4630 Å. Spectral lines from Fei, Feii, Sri, Zrii, Baii, Laii, Ceii, Ndii, Smii, Euii, and Dyii were measured, enabling classifications and neutron-capture abundance patterns for the stars. Of the 62 targets, 44 are found to be highly Eu-enhancedr-II stars, another 17 are moderately Eu-enhancedr-I stars, and one star is found to have ans-process signature. The neutron-capture patterns indicate that the majority of the stars are consistent with enrichment by ther-process. The 62 target stars are found to show significant star-to-star spreads in Sr, Zr, Ba, La, Ce, Nd, Sm, Eu, and Dy, but no significant spread in Fe. The neutron-capture abundances are further found to have slight correlations with sodium abundances from the literature, unlike what has been previously found; follow-up studies are needed to verify this result. The findings in this paper suggest that the Eu-enhanced stars in M15 were enhanced by the same process, that the nucleosynthetic source of this Eu pollution was ther-process, and that ther-process source occurred as the first generation of cluster stars was forming. 
    more » « less
  3. Abstract We present the first results from Chemical Evolution Constrained Using Ionized Lines in Interstellar Aurorae (CECILIA), a Cycle 1 JWST NIRSpec/MSA program that uses ultra-deep ∼30 hr G235M/F170LP observations to target multiple electron temperature-sensitive auroral lines in the spectra of 33 galaxies atz∼ 1–3. Using a subset of 23 galaxies, we construct two ∼600 object-hour composite spectra, both with and without the stellar continuum, and use these to investigate the characteristic rest-optical (λrest≈ 5700–8500 Å) spectrum of star-forming galaxies at the peak epoch of cosmic star formation. Emission lines of eight different elements (H, He, N, O, Si, S, Ar, and Ni) are detected, with most of these features observed to be ≲3% the strength of Hα. We report the characteristic strength of three auroral features ([Nii]λ5756, [Siii]λ6313, and [Oii]λλ7322, 7332), as well as other semi-strong and faint emission lines, including forbidden [Niii]λλ7380, 7414 and permitted Oiλ8449, some of which have never before been observed outside of the local Universe. Using these measurements, we findTe[Nii] = 13,630 ± 2540 K, representing the first measurement of electron temperature using [Nii] in the high-redshift Universe. We also see evidence for broad line emission with a FWHM of 536 167 + 45 km s−1; the broad component of Hαis 6.01%–28.31% the strength of the narrow component and likely arises from star-formation-driven outflows. Finally, we briefly comment on the feasibility of obtaining large samples of faint emission lines using JWST in the future. 
    more » « less
  4. ABSTRACT There has been a concerted effort in recent years to identify the astrophysical sites of the r-process that can operate early in the galaxy. The discovery of many r-process-enhanced (RPE) stars (especially by the R-process Alliance collaboration) has significantly accelerated this effort. However, only limited data exist on the detailed elemental abundances covering the primary neutron-capture peaks. Subtle differences in the structure of the r-process pattern, such as the relative abundances of elements in the third peak, in particular, are expected to constrain the r-process sites further. Here, we present a detailed elemental-abundance analysis of four bright RPE stars selected from the HESP–GOMPA survey. Observations were carried out with the 10-m class telescope Gran Telescopio Canarias (GTC), Spain. The high spectral signal-to-noise ratios obtained allow us to derive abundances for 20 neutron-capture elements, including the third r-process peak element osmium (Os). We detect thorium (Th) in two stars, which we use to estimate their ages. We discuss the metallicity evolution of Mg, Sr, Ba, Eu, Os, and Th in r-II and r-I stars, based on a compilation of RPE stars from the literature. The strontium (Sr) abundance trend with respect to europium (Eu) suggests the need for an additional production site for Sr (similar to several earlier studies); this requirement could be milder for yttrium (Y) and zirconium (Zr). We also show that there could be some time delay between r-II and r-I star formation, based on the Mg/Th abundance ratios. 
    more » « less
  5. Abstract We present deep, narrowband imaging of the nearby spiral galaxy M101 and its satellites to analyze the oxygen abundances of their Hiiregions. Using Case Western Reserve University’s Burrell Schmidt telescope, we add to the narrowband data set of the M101 Group, consisting of Hα, Hβ, and [Oiii] emission lines and the blue [Oii]λ3727 emission line for the first time. This allows for complete spatial coverage of the oxygen abundance of the entire M101 Group. We used the strong-line ratioR23to estimate oxygen abundances for the Hiiregions in our sample, utilizing three different calibration techniques to provide a baseline estimate of the oxygen abundances. This results in ∼650 Hiiregions for M101, 10 Hiiregions for NGC 5477, and ∼60 Hiiregions for NGC 5474, the largest sample for this Group to date. M101 shows a strong abundance gradient, while the satellite galaxies present little or no gradient. There is some evidence for a flattening of the gradient in M101 beyondR∼ 14 kpc. Additionally, M101 shows signs of azimuthal abundance variations to the west and southwest. The radial and azimuthal abundance variations in M101 are likely explained by an interaction it had with its most massive satellite, NGC 5474, ∼300 Myr ago combined with internal dynamical effects such as corotation. 
    more » « less