- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Hafeez, Azeem (4)
-
Malik, Hafiz (3)
-
Bacha, Anys (1)
-
Bayer, Matthew (1)
-
Bellaire, Samuel (1)
-
Elkhail, Abdulrahman Abu (1)
-
Habre, Ricardo (1)
-
Hafiz, Malik (1)
-
Irtaza, Aun (1)
-
Khalid, Malik (1)
-
Noori, Farzan M (1)
-
Refat, Rafi Ud (1)
-
Refat, Rafi Ud Daula (1)
-
Uddin, Md Zia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A novel technique for electronic control unit (ECU) identification is proposed in this study to address security vulnerabilities of the controller area network (CAN) protocol. The reliable ECU identification has the potential to prevent spoofing attacks launched over the CAN due to the lack of message authentication. In this regard, we model the ECU-specific random distortion caused by the imperfections in the digital-to-analog converter and semiconductor impurities in the transmitting ECU for fingerprinting. Afterward, a 4-layered artificial neural network (ANN) is trained on the feature set to identify the transmitting ECU and the corresponding ECU pin. The ECU-pin identification is also a novel contribution of this study and can be used to prevent voltage-based attacks. We have evaluated our method using ANNs over a dataset generated from 7 ECUs with 6 pins, each having 185 records, and 40 records for each pin. The performance evaluation against state-of-the-art methods revealed that the proposed method achieved 99.4% accuracy for ECU identification and 96.7% accuracy for pin identification, which signifies the reliability of the proposed approach.more » « less
-
Bellaire, Samuel; Bayer, Matthew; Hafeez, Azeem; Refat, Rafi Ud; Malik, Hafiz (, Intelligence Systems (IntelliSys'22))The Controller Area Network (CAN) protocol used in vehicles today was designed to be fast, reliable, and robust. However, it is inherently insecure due to its lack of any kind of message authentication. Despite this, CAN is still used extensively in the automotive industry for various electronic control units (ECUs) and sensors which perform critical functions such as engine control. This paper presents a novel methodology for in-vehicle security through fingerprinting of ECUs. The proposed research uses the fingerprints injected in the signal due to material imperfections and semiconductor impurities. By extracting features from the physical CAN signal and using them as inputs for a machine learning algorithm, it is possible to determine the sender ECU of a packet. A high classification accuracy of up to 100.0% is possible when every node on the bus has a sufficiently different channel length.more » « less
-
Hafeez, Azeem; Khalid, Malik; Hafiz, Malik (, 2019 AES INTERNATIONAL CONFERENCE ON AUDIO FORENSICS (June 2019))
-
Elkhail, Abdulrahman Abu; Refat, Rafi Ud Daula; Habre, Ricardo; Hafeez, Azeem; Bacha, Anys; Malik, Hafiz (, IEEE Access)
An official website of the United States government

Full Text Available