skip to main content


Search for: All records

Creators/Authors contains: "Hahn, Horst"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    High entropy oxides (HEOs), based on the incorporation of multiple‐principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto‐electronic states. Epitaxial (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4‐HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel‐HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual‐phase coexistence appears as a universal phenomenon in (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain‐induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out‐of‐plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze‐like magnetic domain structure, indicating the perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine‐tuning properties in oxides.

     
    more » « less
  2. Abstract

    The rocksalt structured (Co,Cu,Mg,Ni,Zn)O entropy-stabilized oxide (ESO) exhibits a reversible phase transformation that leads to the formation of Cu-rich tenorite and Co-rich spinel secondary phases. Using atom probe tomography, kinetic analysis, and thermodynamic modeling, we uncover the nucleation and growth mechanisms governing the formation of these two secondary phases. We find that these phases do not nucleate directly, but rather they first form Cu-rich and Co-rich precursor phases, which nucleate in regions rich in Cu and cation vacancies, respectively. These precursor phases then grow through cation diffusion and exhibit a rocksalt-like crystal structure. The Cu-rich precursor phase subsequently transforms into the Cu-rich tenorite phase through a structural distortion-based transformation, while the Co-rich precursor phase transforms into the Co-rich spinel phase through a defect-mediated transformation. Further growth of the secondary phases is controlled by cation diffusion within the primary rocksalt phase, whose diffusion behavior resembles other common rocksalt oxides.

    Graphical abstract

     
    more » « less
  3. Abstract The enhanced compositional flexibility to incorporate multiple-principal cations in high entropy oxides (HEOs) offers the opportunity to expand boundaries for accessible compositions and unconventional properties in oxides. Attractive functionalities have been reported in some bulk HEOs, which are attributed to the long-range compositional homogeneity, lattice distortion, and local chemical bonding characteristics in materials. However, the intricate details of local composition fluctuation, metal-oxygen bond distortion and covalency are difficult to visualize experimentally, especially on the atomic scale. Here, we study the atomic structure-chemical bonding-property correlations in a series of perovskite-HEOs utilizing the recently developed four-dimensional scanning transmission electron microscopy techniques which enables to determine the structure, chemical bonding, electric field, and charge density on the atomic scale. The existence of compositional fluctuations along with significant composition-dependent distortion of metal-oxygen bonds is observed. Consequently, distinct variations of metal-oxygen bonding covalency are shown by the real-space charge-density distribution maps with sub-ångström resolution. The observed atomic features not only provide a realistic picture of the local physico-chemistry of chemically complex HEOs but can also be directly correlated to their distinctive magneto-electronic properties. 
    more » « less
  4. Interfacial segregation and chemical short-range ordering influence the behavior of grain boundaries in complex concentrated alloys. In this study, we use atomistic modeling of a NbMoTaW refractory complex concentrated alloy to provide insight into the interplay between these two phenomena. Hybrid Monte Carlo and molecular dynamics simulations are performed on columnar grain models to identify equilibrium grain boundary structures. Our results reveal extended near-boundary segregation zones that are much larger than traditional segregation regions, which also exhibit chemical patterning that bridges the interfacial and grain interior regions. Furthermore, structural transitions pertaining to an A2-to-B2 transformation are observed within these extended segregation zones. Both grain size and temperature are found to significantly alter the widths of these regions. An analysis of chemical short-range order indicates that not all pairwise elemental interactions are affected by the presence of a grain boundary equally, as only a subset of elemental clustering types are more likely to reside near certain boundaries. The results emphasize the increased chemical complexity that is associated with near-boundary segregation zones and demonstrate the unique nature of interfacial segregation in complex concentrated alloys. 
    more » « less
  5. null (Ed.)
  6. Abstract

    As a new class of multi-principal component oxides with high chemical disorder, high-entropy oxides (HEOs) have attracted much attention. The stability and tunability of their structure and properties are of great interest and importance, but remain unclear. By using in situ synchrotron radiation X-ray diffraction, Raman spectroscopy, ultraviolet–visible absorption spectroscopy, and ex situ high-resolution transmission electron microscopy, here we show the existence of lattice distortion in the crystalline (Ce0.2La0.2Pr0.2Sm0.2Y0.2)O2−δHEO according to the deviation of bond angles from the ideal values, and discover a pressure-induced continuous tuning of lattice distortion (bond angles) and band gap. As continuous bending of bond angles, pressure eventually induces breakdown of the long-range connectivity of lattice and causes amorphization. The amorphous state can be partially recovered upon decompression, forming glass–nanoceramic composite HEO. These results reveal the unexpected flexibility of the structure and properties of HEOs, which could promote the fundamental understanding and applications of HEOs.

     
    more » « less