skip to main content

Search for: All records

Creators/Authors contains: "Haislip, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Built in 2004, the Skynet robotic telescope network originally consisted of six 0.4 m telescopes located at the Cerro-Tololo Inter-American Observatory in the Chilean Andes. The network was designed to carry out simultaneous multi-wavelength observations of gamma-ray bursts (GRBs) when they are only tens of seconds old. To date, the network has been expanded to ≈20 telescopes, including a 20 m radio telescope, that span four continents and five countries. The Campaign Manager (CM) is a new observing mode that has been developed for Skynet. Available to all Skynet observers, the CM semi-autonomously and indefinitely scales and schedules exposures on the observer’s behalf while allowing for modification to scaling parameters in real time. The CM is useful for follow up to various transient phenomena including gravitational-wave events, GRB localizations, young supernovae, and eventually, sufficiently bright Argus Optical Array and Large Synoptic Survey Telescope events.
  2. Abstract We present high-cadence optical and ultraviolet light curves of the normal Type Ia supernova (SN) 2021aefx, which shows an early bump during the first two days of observation. This bump may be a signature of interaction between the exploding white dwarf and a nondegenerate binary companion, or it may be intrinsic to the white dwarf explosion mechanism. In the case of the former, the short duration of the bump implies a relatively compact main-sequence companion star, although this conclusion is viewing-angle dependent. Our best-fit companion-shocking and double-detonation models both overpredict the UV luminosity during the bump, and existing nickel-shell models do not match the strength and timescale of the bump. We also present nebular spectra of SN 2021aefx, which do not show the hydrogen or helium emission expected from a nondegenerate companion, as well as a radio nondetection that rules out all symbiotic progenitor systems and most accretion disk winds. Our analysis places strong but conflicting constraints on the progenitor of SN 2021aefx; no current model can explain all of our observations.
    Free, publicly-accessible full text available July 1, 2023
  3. Abstract We present high-cadence optical, ultraviolet (UV), and near-infrared data of the nearby ( D ≈ 23 Mpc) Type II supernova (SN) 2021yja. Many Type II SNe show signs of interaction with circumstellar material (CSM) during the first few days after explosion, implying that their red supergiant (RSG) progenitors experience episodic or eruptive mass loss. However, because it is difficult to discover SNe early, the diversity of CSM configurations in RSGs has not been fully mapped. SN 2021yja, first detected within ≈ 5.4 hours of explosion, shows some signatures of CSM interaction (high UV luminosity and radio and x-ray emission) but without the narrow emission lines or early light-curve peak that can accompany CSM. Here we analyze the densely sampled early light curve and spectral series of this nearby SN to infer the properties of its progenitor and CSM. We find that the most likely progenitor was an RSG with an extended envelope, encompassed by low-density CSM. We also present archival Hubble Space Telescope imaging of the host galaxy of SN 2021yja, which allows us to place a stringent upper limit of ≲ 9 M ☉ on the progenitor mass. However, this is in tension with some aspects of themore »SN evolution, which point to a more massive progenitor. Our analysis highlights the need to consider progenitor structure when making inferences about CSM properties, and that a comprehensive view of CSM tracers should be made to give a fuller view of the last years of RSG evolution.« less
    Free, publicly-accessible full text available August 1, 2023
  4. Free, publicly-accessible full text available May 1, 2023