Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We study a hinted heterogeneous multi-agent multi-armed bandits problem (HMA2B), where agents can query low-cost observations (hints) in addition to pulling arms. In this framework, each of the M agents has a unique reward distribution over K arms, and in T rounds, they can observe the reward of the arm they pull only if no other agent pulls that arm. The goal is to maximize the total utility by querying the minimal necessary hints without pulling arms, achieving time-independent regret. We study HMA2B in both centralized and decentralized setups. Our main centralized algorithm, GP-HCLA, which is an extension of HCLA, uses a central decision-maker for arm-pulling and hint queries, achieving O(M^4 K) regret with O(M K log T) adaptive hints. In decentralized setups, we propose two algorithms, HD-ETC and EBHD-ETC, that allow agents to choose actions independently through collision-based communication and query hints uniformly until stopping, yielding O(M^3 K^2) regret with O(M^3 K log T) hints, where the former requires knowledge of the minimum gap and the latter does not. Finally, we establish lower bounds to prove the optimality of our results and verify them through numerical simulations.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            We introduce and study spatiotemporal online allocation with deadline constraints (SOAD), a new online problem motivated by emerging challenges in sustainability and energy. In SOAD, an online player completes a workload by allocating and scheduling it on the points of a metric space (X,d) while subject to a deadlineT. At each time step, a service cost function is revealed that represents the cost of servicing the workload at each point, and the player must irrevocably decide the current allocation of work to points. Whenever the player moves this allocation, they incur a movement cost defined by the distance metricd(⋅, ⋅) that captures, e.g., an overhead cost. SOAD formalizes the open problem of combining general metrics and deadline constraints in the online algorithms literature, unifying problems such as metrical task systems and online search. We propose a competitive algorithm for SOAD along with a matching lower bound establishing its optimality. Our main algorithm, ST-CLIP, is a learning-augmented algorithm that takes advantage of predictions (e.g., forecasts of relevant costs) and achieves an optimal consistency-robustness trade-off. We evaluate our proposed algorithms in a simulated case study of carbon-aware spatiotemporal workload management, an application in sustainable computing that schedules a delay-tolerant batch compute job on a distributed network of data centers. In these experiments, we show that ST-CLIP substantially improves on heuristic baseline methods.more » « lessFree, publicly-accessible full text available March 6, 2026
- 
            We study the cooperative asynchronous multi-agent multi-armed bandits problem, where each agent's active (arm pulling) decision rounds are asynchronous. That is, in each round, only a subset of agents is active to pull arms, and this subset is unknown and time-varying. We consider two models of multi-agent cooperation, fully distributed and leader-coordinated, and propose algorithms for both models that attain near-optimal regret and communications bounds, both of which are almost as good as their synchronous counterparts. The fully distributed algorithm relies on a novel communication policy consisting of accuracy adaptive and on-demand components, and successive arm elimination for decision-making. For leader-coordinated algorithms, a single leader explores arms and recommends them to other agents (followers) to exploit. As agents' active rounds are unknown, a competent leader must be chosen dynamically. We propose a variant of the Tsallis-INF algorithm with low switches to choose such a leader sequence. Lastly, we report numerical simulations of our new asynchronous algorithms with other known baselines.more » « lessFree, publicly-accessible full text available March 6, 2026
- 
            Free, publicly-accessible full text available January 22, 2026
- 
            As computing demand continues to grow, minimizing its environmental impact has become crucial. This paper presents a study on carbon-aware scheduling algorithms, focusing on reducing carbon emissions of delay-tolerant batch workloads. Inspired by the Follow the Leader strategy, we introduce a simple yet efficient meta-algorithm, called FTL, that dynamically selects the most efficient scheduling algorithm based on real-time data and historical performance. Without fine-tuning and parameter optimization, FTL adapts to variability in job lengths, carbon intensity forecasts, and regional energy characteristics, consistently outperforming traditional carbon-aware scheduling algorithms. Through extensive experiments using real-world data traces, FTL achieves 8.2% and 14% improvement in average carbon footprint reduction over the closest runner-up algorithm and the carbon-agnostic algorithm, respectively, demonstrating its efficacy in minimizing carbon emissions across multiple geographical regions.1more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available