- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
10
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Hajiseyedjavadi, Seyedsaeed (1)
-
Lin, Yu-Ru (1)
-
Pelechrinis, Konstantinos (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& *Soto, E. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
& Baek, Y. (0)
-
& Bai, F. (0)
-
& Barth-Cohen, L. (0)
-
& Bassett, L. (0)
-
& Beaulieu, C (0)
-
& Bein, E. (0)
-
& Bevis, T. (0)
-
- Filter by Editor
-
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Ruiz-Arias, P.M. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
A. Beygelzimer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. I. Sacristán, J. C. (0)
-
A. Weinberg, D. Moore-Russo (0)
-
A.I. Sacristán, J.C. Cortés-Zavala (0)
-
ACS (0)
-
AIAA (0)
-
AIAA Propulsion and Energy 2021 (0)
-
AIAA SciTech (0)
-
ASEE Manufacturing Division (0)
-
ASME (0)
-
ASME ICEF (0)
-
ASSOCIATE EDITORS: Bahar, Ivet (Department (0)
-
Abdelaziz, Mohamed (0)
-
Abernethy, Jacob (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The complex relationships in an urban environment can be captured through multiple interrelated sources of data. These relationships form multilayer networks, that are also spatially embedded in an area, could be used to identify latent patterns. In this work, we propose a low-dimensional representation learning approach that considers multiple layers of a multiplex network simultaneously and is able to encode similarities between nodes across different layers. In particular, we introduce a novel neural network architecture to jointly learn low-dimensional representations of each network node from multiple layers of a network. This process simultaneously fuses knowledge of various data sources tomore »