skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Halekas, Jasper S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stream interaction regions (SIRs) are long-lasting solar wind structures that result from stable fast solar wind interacting with preceding slow solar wind. These structures have been examined in depth throughout the heliosphere, particularly at 1 au; however, due to sparse observations, SIRs have not been characterized thoroughly at 1.5 au. Thanks to the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we have a chance to fill this observational gap. We implement in situ solar wind data collected by MAVEN to identify SIRs between 2014 November and 2023 September. We observe 185 SIRs with average durations of 2.2 days that occur primarily during periods of low solar activity. We detect 19 forward shocks, seven reverse shocks, and one shock pair within these 185 SIRs. We predict a total SIR-associated shock detection rate of ∼56% at 1.5 au and compare this rate to previous findings spanning 0.1–5 au. We examine Solar Terrestrial Relations Observatory (STEREO) A data at 1 au to cross-compare with our results at 1.5 au. We determine the magnetic compression ratios (H) associated with SIRs at MAVEN and STEREO-A and find thatHis ∼18% higher at 1.5 au than 1 au. We find that for a given SIR observed at both 1 and 1.5 au,His ∼32% higher at 1.5 au. We also do not see a stark difference in the change inHfor SIRs observed at both STEREO-A and MAVEN with respect to the angular separation of the spacecraft. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  2. Abstract This paper addresses the first direct investigation of the energy budget in the solar corona. Exploiting joint observations of the same coronal plasma by Parker Solar Probe and the Metis coronagraph aboard Solar Orbiter and the conserved equations for mass, magnetic flux, and wave action, we estimate the values of all terms comprising the total energy flux of the proton component of the slow solar wind from 6.3 to 13.3 R ⊙ . For distances from the Sun to less than 7 R ⊙ , we find that the primary source of solar wind energy is magnetic fluctuations including Alfvén waves. As the plasma flows away from the low corona, magnetic energy is gradually converted into kinetic energy, which dominates the total energy flux at heights above 7 R ⊙ . It is found too that the electric potential energy flux plays an important role in accelerating the solar wind only at altitudes below 6 R ⊙ , while enthalpy and heat fluxes only become important at even lower heights. The results finally show that energy equipartition does not exist in the solar corona. 
    more » « less
  3. Abstract The activity of the Sun alternates between a solar minimum and a solar maximum, the former corresponding to a period of “quieter” status of the heliosphere. During solar minimum, it is in principle more straightforward to follow eruptive events and solar wind structures from their birth at the Sun throughout their interplanetary journey. In this paper, we report analysis of the origin, evolution, and heliospheric impact of a series of solar transient events that took place during the second half of August 2018, that is, in the midst of the late declining phase of Solar Cycle 24. In particular, we focus on two successive coronal mass ejections (CMEs) and a following high‐speed stream (HSS) on their way toward Earth and Mars. We find that the first CME impacted both planets, whilst the second caused a strong magnetic storm at Earth and went on to miss Mars, which nevertheless experienced space weather effects from the stream interacting region preceding the HSS. Analysis of remote‐sensing and in‐situ data supported by heliospheric modeling suggests that CME–HSS interaction resulted in the second CME rotating and deflecting in interplanetary space, highlighting that accurately reproducing the ambient solar wind is crucial even during “simpler” solar minimum periods. Lastly, we discuss the upstream solar wind conditions and transient structures responsible for driving space weather effects at Earth and Mars. 
    more » « less