skip to main content


Title: CME Evolution in the Structured Heliosphere and Effects at Earth and Mars During Solar Minimum
Abstract

The activity of the Sun alternates between a solar minimum and a solar maximum, the former corresponding to a period of “quieter” status of the heliosphere. During solar minimum, it is in principle more straightforward to follow eruptive events and solar wind structures from their birth at the Sun throughout their interplanetary journey. In this paper, we report analysis of the origin, evolution, and heliospheric impact of a series of solar transient events that took place during the second half of August 2018, that is, in the midst of the late declining phase of Solar Cycle 24. In particular, we focus on two successive coronal mass ejections (CMEs) and a following high‐speed stream (HSS) on their way toward Earth and Mars. We find that the first CME impacted both planets, whilst the second caused a strong magnetic storm at Earth and went on to miss Mars, which nevertheless experienced space weather effects from the stream interacting region preceding the HSS. Analysis of remote‐sensing and in‐situ data supported by heliospheric modeling suggests that CME–HSS interaction resulted in the second CME rotating and deflecting in interplanetary space, highlighting that accurately reproducing the ambient solar wind is crucial even during “simpler” solar minimum periods. Lastly, we discuss the upstream solar wind conditions and transient structures responsible for driving space weather effects at Earth and Mars.

 
more » « less
Award ID(s):
2147399 1854790
NSF-PAR ID:
10372329
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
20
Issue:
9
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cannot be traced back to an observed CME, or, if the CME is identified, its origin may be elusive or ambiguous in coronal images. Such CMEs have been termed “stealth CMEs”. In this review, we focus on these “problem” geomagnetic storms in the sense that the solar/CME precursors are enigmatic and stealthy. We start by reviewing evidence for stealth CMEs discussed in past studies. We then identify several moderate to strong geomagnetic storms (minimum Dst$< -50$<50 nT) in solar cycle 24 for which the related solar sources and/or CMEs are unclear and apparently stealthy. We discuss the solar and in situ circumstances of these events and identify several scenarios that may account for their elusive solar signatures. These range from observational limitations (e.g., a coronagraph near Earth may not detect an incoming CME if it is diffuse and not wide enough) to the possibility that there is a class of mass ejections from the Sun that have only weak or hard-to-observe coronal signatures. In particular, some of these sources are only clearly revealed by considering the evolution of coronal structures over longer time intervals than is usually considered. We also review a variety of numerical modelling approaches that attempt to advance our understanding of the origins and consequences of stealthy solar eruptions with geoeffective potential. Specifically, we discuss magnetofrictional modelling of the energisation of stealth CME source regions and magnetohydrodynamic modelling of the physical processes that generate stealth CME or CME-like eruptions, typically from higher altitudes in the solar corona than CMEs from active regions or extended filament channels.

     
    more » « less
  2. Abstract

    Modeling the impact of space weather events such as coronal mass ejections (CMEs) is crucial to protecting critical infrastructure. The Space Weather Modeling Framework is a state‐of‐the‐art framework that offers full Sun‐to‐Earth simulations by computing the background solar wind, CME propagation, and magnetospheric impact. However, reliable long‐term predictions of CME events require uncertainty quantification (UQ) and data assimilation. We take the first steps by performing global sensitivity analysis (GSA) and UQ for background solar wind simulations produced by the Alfvén Wave Solar atmosphere Model (AWSoM) for two Carrington rotations: CR2152 (solar maximum) and CR2208 (solar minimum). We conduct GSA by computing Sobol' indices that quantify contributions from model parameter uncertainty to the variance of solar wind speed and density at 1 au, both crucial quantities for CME propagation and strength. Sobol' indices also allow us to rank and retain only the most important parameters, which aids in the construction of smaller ensembles for the reduced‐dimension parameter space. We present an efficient procedure for computing the Sobol' indices using polynomial chaos expansion surrogates and space‐filling designs. The PCEs further enable inexpensive forward UQ. Overall, we identify three important model parameters: the multiplicative factor applied to the magnetogram, Poynting flux per magnetic field strength constant used at the inner boundary, and the coefficient of the perpendicular correlation length in the turbulent cascade model in AWSoM.

     
    more » « less
  3. Aims : This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods : We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results : The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models. 
    more » « less
  4. Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. Aims. This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7−8, 2020, from both an observational and a modeling perspective. The aim is to provide a full description of those events, their mutual interaction, and their coupling with the ambient solar wind and the HCS. Methods. Data acquired by the MAG magnetometer, the Energetic Particle Detector suite, and the Radio and Plasma Waves instrument are used to provide information on the ICMEs’ magnetic topology configuration, their magnetic connectivity to the Sun, and insights into the heliospheric plasma environment where they travel, respectively. On the modeling side, the Heliospheric Upwind eXtrapolation model, the 3D COronal Rope Ejection technique, and the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) tool are used to complement Solar Orbiter observations of the ambient solar wind and ICMEs, and to simulate the evolution and interaction of the ejecta in the inner heliosphere, respectively. Results. Both data analysis and numerical simulations indicate that the passage of two distinct, dynamically and magnetically interacting (via magnetic reconnection processes) ICMEs at Solar Orbiter is a possible scenario, supported by the numerous similarities between EUHFORIA time series at Solar Orbiter and Solar Orbiter data. Conclusions. The combination of in situ measurements and numerical simulations (together with remote sensing observations of the corona and inner heliosphere) will significantly lead to a deeper understanding of the physical processes occurring during the CME-CME interaction. 
    more » « less
  5. Abstract

    We determine the primary modes of field‐aligned current (FAC) variability and their hemispheric asymmetry by nonlinear regression analysis of a multiyear global data set of Iridium constellation engineering‐grade magnetometer data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment program. The spatial and temporal FAC variability associated with three major categories of solar wind drivers, (1) slow flow, (2) high‐speed streams (HSS), (3) transient flow related to coronal mass ejections (CMEs), and (4) a combination of these, is characterized as empirical orthogonal functions (EOFs) and their time‐varying amplitude. For the combined solar wind category, the order of the modes of variability are strengthening/weakening of (1) EOF1—all FACs; (2) EOF2—Region 2 (R2) FACs; and (3) EOF3—dayside/nightside FACs. The first two EOFs are associated with solar wind coupling; EOF3 is associated with the ecliptic components of the interplanetary magnetic field (IMF). We also find hemispheric asymmetry in FACs. Northern Hemisphere EOFs show clearer spatial features and higher correlation coefficients with solar wind drivers. The Northern Hemisphere also shows higher correlation coefficients in all seasons except winter. We find transient flow EOFs to be better correlated with solar wind drivers such as IMFBzand coupling functions, while HSS EOFs are better correlated with solar wind plasma parameters. CME‐related transient flow EOFs also show R2 FAC variabilities that are not found in other separate wind drivers. Application of the EOF analysis to the Iridium magnetometer data shows significant promise for greater understanding of geoeffectiveness of solar wind interactions with geospace.

     
    more » « less