Abstract Coronal mass ejections (CMEs) and high speed streams (HSSs) are large‐scale transient structures that routinely propagate away from the Sun. Individually, they can cause space weather effects at the Earth, or elsewhere in space, but many of the largest events occur when these structures interact during their interplanetary propagation. We present the initial coupling of Open Solar Physics Rapid Ensemble Information (OSPREI), a model for CME evolution, with Mostly Empirical Operational Wind with a High Speed Stream, a time‐dependent HSS model that can serve as a background for the OSPREI CME. We present several improvements made to OSPREI in order to take advantage of the new time‐dependent, higher‐dimension background. This includes an update in the drag calculation and the ability to determine the rotation of a yaw‐like angle. We present several theoretical case studies, describing the difference in the CME behavior between a HSS background and a quiescent one. This behavior includes interplanetary CME propagation, expansion, deformation, and rotation, as well as the formation of a CME‐driven sheath. We also determine how the CME behavior changes with the HSS size and initial front distance. Generally, for a fast CME, we see that the drag is greatly reduced within the HSS, leading to faster CMEs and shorter travel times. The drag reappears stronger if the CME reaches the stream interaction region or upstream solar wind, leading to a stronger shock with more compression until the CME sufficiently decelerates. We model a CME–HSS interaction event observed by Parker Solar Probe in January 2022. The model improvements create a better match to the observed in situ profiles.
more »
« less
CME Evolution in the Structured Heliosphere and Effects at Earth and Mars During Solar Minimum
Abstract The activity of the Sun alternates between a solar minimum and a solar maximum, the former corresponding to a period of “quieter” status of the heliosphere. During solar minimum, it is in principle more straightforward to follow eruptive events and solar wind structures from their birth at the Sun throughout their interplanetary journey. In this paper, we report analysis of the origin, evolution, and heliospheric impact of a series of solar transient events that took place during the second half of August 2018, that is, in the midst of the late declining phase of Solar Cycle 24. In particular, we focus on two successive coronal mass ejections (CMEs) and a following high‐speed stream (HSS) on their way toward Earth and Mars. We find that the first CME impacted both planets, whilst the second caused a strong magnetic storm at Earth and went on to miss Mars, which nevertheless experienced space weather effects from the stream interacting region preceding the HSS. Analysis of remote‐sensing and in‐situ data supported by heliospheric modeling suggests that CME–HSS interaction resulted in the second CME rotating and deflecting in interplanetary space, highlighting that accurately reproducing the ambient solar wind is crucial even during “simpler” solar minimum periods. Lastly, we discuss the upstream solar wind conditions and transient structures responsible for driving space weather effects at Earth and Mars.
more »
« less
- PAR ID:
- 10372329
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 20
- Issue:
- 9
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract One of the major processes that solar wind drives is the outflow and escape of ions from the planetary atmospheres. The major ion species in the upper ionospheres of both Earth and Mars is O+, and hence it is more likely to dominate the escape process. On Earth, due to a strong intrinsic magnetic field, the major ion outflow pathways are through the cusp, polar cap, and the auroral oval. In contrast, Mars has an induced magnetosphere, where the ionosphere is in direct contact with the shocked solar wind plasma. Therefore, physical processes underlying the ion energization and escape rates are expected to be different on Mars as compared to Earth. In the current work, we study the near-simultaneous ion outflow event from both Earth and Mars during the passage of a stream interaction region/high-speed stream (SIR/HSS) during 2016 May, when both the planets were approximately aligned on the same side of the Sun. The SIR/HSS propagation was recorded by spacecraft at the Sun–Earth L1 point and Mars Express at 1.5 au. During the passage of the SIR, the dayside and nightside ion outflows at Earth were observed by Van Allen Probes and Magnetospheric Multiscale Mission orbiters, respectively. At Mars, the ion energization at different altitudes was observed by the STATIC instrument on board the MAVEN orbiter. We observe evidence for the enhanced ion outflow from both Earth and Mars during the passage of the SIR, and identify the dominant drivers of the ion outflow.more » « less
-
Aims : This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods : We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results : The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models.more » « less
-
Abstract EUropean Heliospheric FORecasting Information Asset (EUHFORIA) is a physics‐based data‐driven solar wind and coronal mass ejections (CMEs) propagation model designed for space weather forecasting and event analysis investigations. Although EUHFORIA can predict the solar wind plasma and magnetic field properties at Earth, it is not equipped to quantify the geo‐effectiveness of the solar transients in terms of geomagnetic indices like the disturbance storm time (Dst) index and the auroral indices, that quantify the impact of the magnetized plasma encounters on Earth's magnetosphere. Therefore, we couple EUHFORIA with the Open Geospace General Circulation Model (OpenGGCM), a magnetohydrodynamic model of the response of Earth's magnetosphere, ionosphere, and thermosphere to transient solar wind characteristics. In this coupling, OpenGGCM is driven by the solar wind and interplanetary magnetic field obtained from EUHFORIA simulations to produce the magnetospheric and ionospheric response to the CMEs. This coupling is validated with two observed geo‐effective CME events driven with the spheromak flux‐rope CME model. We compare these simulation results with the indices obtained from OpenGGCM simulations driven by the measured solar wind data from spacecraft. We further employ the dynamic time warping (DTW) technique to assess the model performance in predicting Dst. The main highlight of this study is to use EUHFORIA simulated time series to predict the Dst and auroral indices 1–2 days in advance, as compared to using the observed solar wind data at L1, which only provides predictions 1–2 hr before the actual impact.more » « less
-
Context.Predicting geomagnetic events starts with an understanding of the Sun-Earth chain phenomena in which (interplanetary) coronal mass ejections (CMEs) play an important role in bringing about intense geomagnetic storms. It is not always straightforward to determine the solar source of an interplanetary coronal mass ejection (ICME) detected at 1 au. Aims.The aim of this study is to test by a magnetohydrodynamic (MHD) simulation the chain of a series of CME events detected from L1 back to the Sun in order to determine the relationship between remote and in situ CMEs. Methods.We analysed both remote-sensing observations and in situ measurements of a well-defined magnetic cloud (MC) detected at L1 occurring on 28 June 2013. The MHD modelling is provided by the 3D MHD European Heliospheric FORecasting Information Asset (EUHFORIA) simulation model. Results.After computing the background solar wind, we tested the trajectories of six CMEs occurring in a time window of five days before a well-defined MC at L1 that may act as the candidate of the MC. We modelled each CME using the cone model. The test involving all the CMEs indicated that the main driver of the well-defined, long-duration MC was a slow CME. For the corresponding MC, we retrieved the arrival time and the observed proton density. Conclusions.EUHFORIA confirms the results obtained in the George Mason data catalogue concerning this chain of events. However, their proposed solar source of the CME is disputable. The slow CME at the origin of the MC could have its solar source in a small, emerging region at the border of a filament channel at latitude and longitude equal to +14 degrees.more » « less