skip to main content


Search for: All records

Creators/Authors contains: "Hamilton, Chris A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Systematics provides the foundational knowledge about the units of biodiversity, i.e., species, and how we classify them. The results of this discipline extend across Biology and can have important impacts on conservation. Here we review the systematic and taxonomic practices within Theraphosidae over the last 260 years. We examine the rate of newly described species and investigate the contemporary practices being used in the description of new genera and species. There have been two large waves of theraphosid taxonomy, with an explosive growth of newly described species and author combinations in the last 60 years. We look back and find that during 2010–2024 contemporary practices in theraphosid systematics and taxonomy have remained largely static, being dominated by morphology-based approaches. Over this period, only 10% of newly described species incorporated DNA data or explicitly stated the species concept used. Similarly for genera, only five of the 37 newly described genera over that time were supported as distinct and monophyletic by DNA. We highlight the taxonomic movement of species among Theraphosidae, Barychelidae, and Paratropididae; however, given the limited molecular sampling for the two latter families, the boundaries of these families remain a significant area of needed research. To promote inclusivity, we provide a copy of this paper in Spanish as supplementary material.

     
    more » « less
    Free, publicly-accessible full text available August 30, 2025
  2. The Chiricahua Mountains in southeastern Arizona are renowned for their exceptional biodiversity and high levels of endemism. Morphological, genomic, behavioral, and distributional data were used to report the discovery of a remarkable new tarantula species from this range.Aphonopelma jacobiisp. nov.inhabits high-elevation mixed conifer forests in these mountains, but also co-occurs and shares its breeding period withA. chiricahua—a related member of theMarxispecies group—in mid-elevation Madrean evergreen oak and pine-oak woodlands. This marks the first documented case of syntopy between two montane endemics in the Madrean Archipelago and adds to our knowledge of this threatened region’s unmatched tarantula diversity in the United States. An emended diagnosis and redescription forA. chiricahuaare also provided based on several newly acquired and accurately identified specimens. Phylogenetic analyses of mitochondrial and genomic-scale data reveal thatA. jacobiisp. nov.is more closely related toA. marxi, a species primarily distributed on the Colorado Plateau, than toA. chiricahuaor the other Madrean Sky Island taxa. These data provide the evolutionary framework for better understanding the region’s complex biogeographic history (e.g., biotic assembly of the Chiricahua Mountains) and conservation of these spiders.

     
    more » « less
    Free, publicly-accessible full text available August 16, 2025
  3. Temporal ecological niche partitioning is an underappreciated driver of speciation. While insects have long been models for circadian biology, the genes and circuits that allow adaptive changes in diel-niches remain poorly understood. We compared gene expression in closely related day- and night-active non-model wild silk moths, with otherwise similar ecologies. Using an ortholog-based pipeline to compare RNA-Seq patterns across two moth species, we find over 25 pairs of gene orthologs showing differential expression. Notably, the genedisco,involved in circadian control, optic lobe and clock neuron development inDrosophila, shows robust adult circadian mRNA cycling in moth heads.Discois highly conserved in moths and has additional zinc-finger domains with specific nocturnal and diurnal mutations. We proposediscoas a candidate gene for the diversification of temporal diel-niche in moths.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. Theraphosinae is the most diverse subfamily of Theraphosidae spiders, but their evolutionary history remains unresolved to date. This problem is common in taxonomic groups with phylogenetic hypotheses that have often been based only on qualitative morphological characters and, rarely, on molecular analyses. Phylogenomics has significantly contributed to the understanding of the evolution of many non-model groups, such as spiders. Herein, we employed ultraconserved elements (UCEs) phylogenomics to propose a new hypothesis for a group of Theraphosinae genera, namely Lasiodoriforms:Vitalius, Lasiodora, Eupalaestrus, Pterinopelma, Proshapalopus, andNhandu. We propose three genera and their respective morphological diagnoses are provided. Our phylogeny supports the transfer of species from the genusVitaliustoPterinopelmaandProshapalopusand fromProshapalopustoEupalaestrus. Finally, we describe a new species ofVitaliusfrom Southern Brazil. Based on these three new generic descriptions and transferred species, the Lasiodoriform tarantulas comprise nine genera from Argentina, Brazil, Paraguay, and Uruguay, and the genusVitaliusnow includes seven species.

     
    more » « less
  5. Abstract

    Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this “splitting” scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.]

     
    more » « less
  6. Across insects, wing shape and size have undergone dramatic divergence even in closely related sister groups. However, we do not know how morphology changes in tandem with kinematics to support body weight within available power and how the specific force production patterns are linked to differences in behaviour. Hawkmoths and wild silkmoths are diverse sister families with divergent wing morphology. Using three-dimensional kinematics and quasi-steady aerodynamic modelling, we compare the aerodynamics and the contributions of wing shape, size and kinematics in 10 moth species. We find that wing movement also diverges between the clades and underlies two distinct strategies for flight. Hawkmoths use wing kinematics, especially high frequencies, to enhance force and wing morphologies that reduce power. Silkmoths use wing morphology to enhance force, and slow, high-amplitude wingstrokes to reduce power. Both strategies converge on similar aerodynamic power and can support similar body weight ranges. However, inter-clade within-wingstroke force profiles are quite different and linked to the hovering flight of hawkmoths and the bobbing flight of silkmoths. These two moth groups fly more like other, distantly related insects than they do each other, demonstrating the diversity of flapping flight evolution and a rich bioinspired design space for robotic flappers.

     
    more » « less
  7. The regions of the Andes and Caribbean-Mesoamerica are both hypothesized to be the cradle for many Neotropical lineages, but few studies have fully investigated the dynamics and interactions between Neotropical bioregions. The New World hawkmoth genus Xylophanes is the most taxonomically diverse genus in the Sphingidae, with the highest endemism and richness in the Andes and Caribbean-Mesoamerica. We integrated phylogenomic and DNA barcode data and generated the first time-calibrated tree for this genus, covering 93.8% of the species diversity. We used event-based likelihood ancestral area estimation and biogeographic stochastic mapping to examine the speciation and dispersal dynamics of Xylophanes across bioregions. We also used trait-dependent diversification models to compare speciation and extinction rates of lineages associated with different bioregions. Our results indicate that Xylophanes originated in Caribbean-Mesoamerica in the Late Miocene, and immediately diverged into five major clades. The current species diversity and distribution of Xylophanes can be explained by two consecutive phases. In the first phase, the highest Xylophanes speciation and emigration rates occurred in the Caribbean-Mesoamerica, and the highest immigration rates occurred in the Andes, whereas in the second phase the highest immigration rates were found in Amazonia, and the Andes had the highest speciation and emigration rates. 
    more » « less
  8. Planetary extinction of biodiversity underscores the need for taxonomy. Here, we scrutinize spider taxonomy over the last decade (2008–2018), compiling 2083 published accounts of newly described species. We evaluated what type of data were used to delineate species, whether data were made freely available, whether an explicit species hypothesis was stated, what types of media were used, the sample sizes, and the degree to which species constructs were integrative. The findings we report reveal that taxonomy remains largely descriptive, not integrative, and provides no explicit conceptual framework. Less than 4% of accounts explicitly stated a species concept and over one-third of all new species described were based on 1–2 specimens or only one sex. Only ~5% of studies made data freely available, and only ~14% of all newly described species employed more than one line of evidence, with molecular data used in ~6% of the studies. These same trends have been discovered in other animal groups, and therefore we find it logical that taxonomists face an uphill challenge when justifying the scientific rigor of their field and securing the needed resources. To move taxonomy forward, we make recommendations that, if implemented, will enhance its rigor, repeatability, and scientific standards. 
    more » « less
  9. Abstract

    One of the key objectives in biological research is understanding how evolutionary processes have produced Earth’s diversity. A critical step toward revealing these processes is an investigation of evolutionary tradeoffs—that is, the opposing pressures of multiple selective forces. For millennia, nocturnal moths have had to balance successful flight, as they search for mates or host plants, with evading bat predators. However, the potential for evolutionary trade-offs between wing shape and body size are poorly understood. In this study, we used phylogenomics and geometric morphometrics to examine the evolution of wing shape in the wild silkmoth subfamily Arsenurinae (Saturniidae) and evaluate potential evolutionary relationships between body size and wing shape. The phylogeny was inferred based on 782 loci from target capture data of 42 arsenurine species representing all 10 recognized genera. After detecting in our data one of the most vexing problems in phylogenetic inference—a region of a tree that possesses short branches and no “support” for relationships (i.e., a polytomy), we looked for hidden phylogenomic signal (i.e., inspecting differing phylogenetic inferences, alternative support values, quartets, and phylogenetic networks) to better illuminate the most probable generic relationships within the subfamily. We found there are putative evolutionary trade-offs between wing shape, body size, and the interaction of fore- and hindwing (HW) shape. Namely, body size tends to decrease with increasing HW length but increases as forewing (FW) shape becomes more complex. Additionally, the type of HW (i.e., tail or no tail) a lineage possesses has a significant effect on the complexity of FW shape. We outline possible selective forces driving the complex HW shapes that make Arsenurinae, and silkmoths as a whole, so charismatic. [Anchored hybrid enrichment; Arsenurinae; geometric morphometrics; Lepidoptera; phylogenomics; Saturniidae.]

     
    more » « less
  10. null (Ed.)
    The evolution of flapping flight is linked to the prolific success of insects. Across Insecta, wing morphology diversified, strongly impacting aerodynamic performance. In the presence of ecological opportunity, discrete adaptive shifts and early bursts are two processes hypothesized to give rise to exceptional morphological diversification. Here, we use the sister-families Sphingidae and Saturniidae to answer how the evolution of aerodynamically important traits is linked to clade divergence and through what process(es) these traits evolve. Many agile Sphingidae evolved hover feeding behaviours, while adult Saturniidae lack functional mouth parts and rely on a fixed energy budget as adults. We find that Sphingidae underwent an adaptive shift in wing morphology coincident with life history and behaviour divergence, evolving small high aspect ratio wings advantageous for power reduction that can be moved at high frequencies, beneficial for flight control. By contrast, Saturniidae, which do not feed as adults, evolved large wings and morphology which surprisingly does not reduce aerodynamic power, but could contribute to their erratic flight behaviour, aiding in predator avoidance. We suggest that after the evolution of flapping flight, diversification of wing morphology can be potentiated by adaptative shifts, shaping the diversity of wing morphology across insects. 
    more » « less