skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hamilton, Matt"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Some rock and soil samples exhibit significant loss of magnetic susceptibility (χ) with increasing applied field amplitude even at relatively low (10–100s of A/m) fields, a behavior which remains unexplained. Exceptionally strong negative field‐dependence of susceptibility (χHD) is present in sandstones and altered intermediate‐felsic igneous rocks in several cores from the northeastern Oklahoma subsurface. These same rocks also show elevated frequency‐dependence of susceptibility (χFD), with reasonable correlation ofχHDtoχFD, and frequency‐dependentχHD. Results from multiple characterization methods indicate that strongly negativeχHDin these rocks is linked to a yet‐unidentified phase which begins the approach to magnetic saturation in low fields (<1 mT/800 A/m), shows elevatedχFDto low temperatures, is unstable at high temperatures, possesses significant anisotropy of magnetic susceptibility, and becomes paramagnetic above ∼83°C. Clear associations with fluid alteration features indicate that this material may be highly relevant to rock alteration, diagenetic, and environmental studies. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. Abstract Paleomagnetism can elucidate the origin of inner core structure by establishing when crystallization started. The salient signal is an ultralow field strength, associated with waning thermal energy to power the geodynamo from core-mantle heat flux, followed by a sharp intensity increase as new thermal and compositional sources of buoyancy become available once inner core nucleation (ICN) commences. Ultralow fields have been reported from Ediacaran (~565 Ma) rocks, but the transition to stronger strengths has been unclear. Herein, we present single crystal paleointensity results from early Cambrian (~532 Ma) anorthosites of Oklahoma. These yield a time-averaged dipole moment 5 times greater than that of the Ediacaran Period. This rapid renewal of the field, together with data defining ultralow strengths, constrains ICN to ~550 Ma. Thermal modeling using this onset age suggests the inner core had grown to 50% of its current radius, where seismic anisotropy changes, by ~450 Ma. We propose the seismic anisotropy of the outermost inner core reflects development of a global spherical harmonic degree-2 deep mantle structure at this time that has persisted to the present day. The imprint of an older degree-1 pattern is preserved in the innermost inner core. 
    more » « less