Abstract The past ∼200 million years of Earth's geomagnetic field behavior have been recorded within oceanic basalts, many of which are only accessible via scientific ocean drilling. Obtaining the best possible paleomagnetic measurements from such valuable samples requires an a priori understanding of their magnetic mineralogies when choosing the most appropriate protocol for stepwise demagnetization experiments (either alternating field or thermal). Here, we present a quick, and non‐destructive method that utilizes the amplitude‐dependence of magnetic susceptibility to screen submarine basalts prior to choosing a demagnetization protocol, whenever conducting a pilot study or other detailed rock‐magnetic characterization is not possible. We demonstrate this method using samples acquired during International Ocean Discovery Program Expedition 391. Our approach is rooted in the observation that amplitude‐dependent magnetic susceptibility is observed in basalt samples whose dominant magnetic carrier is multidomain titanomagnetite (∼TM60–65, (Ti0.60–0.65Fe0.35–0.40)Fe2O4). Samples with low Ti contents within titanomagnetite or samples that have experienced a high degree of oxidative weathering do not display appreciable amplitude dependence. Due to their low Curie temperatures, basalts that possess amplitude‐dependence should ideally be demagnetized either using alternating fields or via finely‐spaced thermal demagnetization heating steps below 300°C. Our screening method can enhance the success rate of paleomagnetic studies of oceanic basalt samples.
more »
« less
This content will become publicly available on August 1, 2025
Strongly Negative Low‐Field Variation of Magnetic Susceptibility: Rock Magnetic Character of the Basement‐Cover Interface of Northeastern Oklahoma
Abstract Some rock and soil samples exhibit significant loss of magnetic susceptibility (χ) with increasing applied field amplitude even at relatively low (10–100s of A/m) fields, a behavior which remains unexplained. Exceptionally strong negative field‐dependence of susceptibility (χHD) is present in sandstones and altered intermediate‐felsic igneous rocks in several cores from the northeastern Oklahoma subsurface. These same rocks also show elevated frequency‐dependence of susceptibility (χFD), with reasonable correlation ofχHDtoχFD, and frequency‐dependentχHD. Results from multiple characterization methods indicate that strongly negativeχHDin these rocks is linked to a yet‐unidentified phase which begins the approach to magnetic saturation in low fields (<1 mT/800 A/m), shows elevatedχFDto low temperatures, is unstable at high temperatures, possesses significant anisotropy of magnetic susceptibility, and becomes paramagnetic above ∼83°C. Clear associations with fluid alteration features indicate that this material may be highly relevant to rock alteration, diagenetic, and environmental studies.
more »
« less
- Award ID(s):
- 2153786
- PAR ID:
- 10554909
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 129
- Issue:
- 8
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)SUMMARY An archaeomagnetic, rock magnetic and magnetic fabric study has been carried out on seven anthropogenic ash horizons in the Middle Palaeolithic sedimentary level XXIV at the rock shelter of Crvena Stijena (‘Red Rock’), Montenegro. The study has multiple goals, including the identification of iron bearing minerals formed during combustion, assessment of the suitability of these combustion features for recording the Earth´s magnetic field direction, revelation of the magnetic fabric and its significance in the characterization of cave (rock shelter) burnt facies, and identification of post-burning alteration processes. Magnetite has been identified as the main ferromagnetic component of the ash. The ash layers exhibit a high thermomagnetic reversibility in contrast to the irreversible behaviour of their subjacent burnt black layers which is related to the different temperatures attained. Seven mean archaeomagnetic directions were obtained with acceptable statistical values indicating that these features recorded the field direction at the time of burning. However, some of them are out of the expected range of secular variation for mid-latitude regions suggesting post-burning alterations. The magnetic fabric of the ash was characterized by anisotropy of low field magnetic susceptibility measurements. Statistical analysis (box and whisker plot) of the basic anisotropy parameters, such as foliation, lineation, degree of anisotropy and the shape parameter, along with the alignment of the principal susceptibilities on stereoplots, revealed variation among the ash units. The diverse, oblate to prolate, lineated or strongly foliated, quasi-horizontally and vertically oriented fabrics of the units may indicate different slope processes, such as orientation by gravity, solifluction, run-off water, quasi-vertical migration of groundwater and post-burning/post-depositional alteration of the fabric by rockfall impact. In sum, the magnetic characterization of the ash layers has shown the occurrence of different post-burning alteration processes previously not identified at the site. Alteration processes in prehistoric combustion features are often identified from macroscopic observations but our study demonstrates that multiple processes can affect them and are usually unnoted because they take place on a microscopic scale. Their identification is critical for a correct chronological and cultural interpretation of a site (e.g. collection of samples for dating, stratigraphic displacement of remains), especially if significant alterations are involved. Magnetic methods are therefore a powerful but underutilized tool in palaeolithic research for the identification and evaluation of taphonomic processes affecting prehistoric fires.more » « less
-
We explore time series of magnetic susceptibility (χ) and anhysteretic remanent magnetization (ARM) in settings of rapid sediment accumulation rate (SAR) with the goals of partitioning exogenic forcings from autogenic processes and to better understand how these magnetic signals are encoded in sedimentary archives. Environmental signals of periodic external forcings commonly operate at Milankovitch frequencies, but in rapid SAR settings autogenic processes including channel avulsions and delta lobe switching both shred high-frequency external forcings, or even impart their own quasi-periodic signals. We measure χ using both a hand-held KT-10 magnetic susceptibility meter and a lab-based Kappabridge KLY-3s, and ARM in the < 2 mm size fraction using a GSD-5 alternating-field and a 2G superconducting magnetometers, with all results mass normalized to SI units. We focus on 40 samples collected at 25 cm intervals from 10 m of propagating foresets in a Gilbert delta of the Provo stage of Lake Bonneville at High Creek, Utah. A luminescence-based age model in this delta establishes a mean SAR of 8 cm/yr and terrestrial cosmogenic nuclide concentrations of both delta sediment and alluvium in the source indicates modern and paleoerosion rates (E) ranging from ~60-100 m/Myr (0.006-0.01 cm/yr). Periodicities of 18 and 33 yrs in the rock magnetic time series are greater than twice the compensation time for these foresets where peaks in χ and ARM are positively correlated with fine-grained matrix. We interpret a positive correlation between E and χ as driven by stripping of soil-mantled hillslopes that harbor greater concentrations of magnetic minerals than the underlying bedrock. The encoding of the environmental signal, here interpreted as autogenic cascading of sediment on foreset surfaces, is primarily set by the SAR and depositional processes, which are decoupled from E. Nevertheless, the strength of the magnetic signal in our sedimentary archive varies with E which can be more widely explored as a E-proxy when locally calibrated. These results offer insight into how to isolate the impact of quasi-periodic tectonic forcings on stratigraphic archives at sub-Milankovitch frequencies, where autogenic processes dominate depositional processes but which also encode critical human-dimension natural hazard information.more » « less
-
Abstract Interpreting the paleomagnetic records of altered rocks, especially those from Earth's earliest history, is complicated by metamorphic overprints and recrystallization of ferromagnetic minerals. However, these records may be as valuable as a primary signal if the timing and mechanism of alteration‐related remagnetizations can be ascertained. We illustrate the success of this approach in the case of seafloor hydrothermal alteration by integrating simple rock magnetic and magnetic microscopy data with petrography, hyperspectral imagery, aeromagnetic surveys, field mapping, and geochronology of Paleoarchean basalts from North Pole Dome located in the East Pilbara Craton, Western Australia. We identify 12 hydrothermal episodes during the deposition of the stratigraphy between ∼3490 and 3350 Ma. These episodes produced stratabound zones of hydrothermal alteration with predictable facies successions of mineral assemblages reflecting sub‐seafloor gradients in fluid temperature, pH, composition, and water/rock ratios. Rock magnetic data and magnetic microscopy pinpoint the secondary ferromagnetic minerals within each alteration assemblage, revealing a specific single‐domain magnetite population within leucoxenes (titanite and anatase after primary titanomagnetites) that always accompanies low‐water/rock alteration in fluids buffered to pH equilibrium with the host basalts. Highly uniform magnetic properties indicate that once formed, these magnetites remain unchanged upon further exposure to rock buffered fluids, stabilizing them against later alteration events and making them durable paleofield recorders. The altered basalts hosting this magnetite have unique and consistent appearances, mineralogy, IR absorption features, aeromagnetic signatures, and magnetic properties across all hydrothermal systems studied here, highlighting how integrating these data sets can identify and interpret this alteration style in future paleomagnetic investigations.more » « less
-
SUMMARY Accurate absolute palaeointensity is essential for understanding dynamo processes on the Earth and other planetary bodies. Although great efforts have been made to propose techniques to obtain magnetic field strength from rock samples, such as Thellier-series methods, the amount of high-fidelity palaeointensities remains limited. One primary reason for this is the thermal alteration of samples that pervasively occurred during palaeointensity experiments. In this study, we developed a comprehensive rock magnetic experiment, termed thermal rock magnetic cycling (TRMC), that can utilize measurements of critical rock magnetic properties at elevated temperatures during multiple heating-cooling cycles to track thermal changes in bulk samples and individual magnetic components with different Curie temperatures in samples for palaeointensity interpretations. We demonstrate this method on a Galapagos lava sample, GA 84.6. The results for this specimen revealed that GA 84.6v underwent thermophysical alteration throughout the TRMC experiment, resulting in changes in its remanence carrying capacity. These findings were then used to interpret the palaeointensity results of specimen GA 84.6c, which revealed that the two-slope Arai plot yielded two linear segments with distinct palaeointensity values that were both biased by thermophysical alteration. To further test the TRMC method, we selected another historical lava sample (HS 2) from Mt Lassen, detecting slight thermal-physical changes after heating the specimen HS 2–8C to a target temperature of 400 °C. We also isolated a stable magnetic component with a Curie temperature below 400 °C using the TRMC method, which may provide a more reliable palaeointensity estimate of 51 μT. By providing a method for tracking thermal alteration independent of palaeointensity experiments, the TRMC method can explore subtle, unrecognizable thermal alteration processes in less detailed palaeointensity measurements, which can help to assess the thermal stability of the measured samples and interpret the changes in the TRM unblocking spectrum and palaeointensity estimates, facilitating the acquisition of more reliable records for constrain the formation of the inner core and the evolution of Earth's magnetic field.more » « less