skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hammad, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We study flavor changing neutral current decays ofBandKmesons in the dark U(1)Dmodel, with the dark photon/darkZmass between 10 MeV and 2 GeV. Although the model provides an improved fit (compared to the standard model) to the differential decay distributions ofB → K(∗)+, withℓ=μ,e, andBs→ ϕμ+μ, the allowed parameter space is ruled out by measurements of atomic parity violation,K+→ μ++invisibledecay, and$$ {B}_s-{\overline{B}}_s $$ B s B ¯ s mixing, among others. To evade constraints from low energy data, we extend the model to allow for (1) additional invisibleZDdecay, (2) a direct vector coupling ofZDto muons, and (3) a direct coupling ofZDto both muons and electrons, with the electron coupling fine-tuned to cancel theZDcoupling to electrons via mixing. We find that only the latter case survives all constraints. 
    more » « less
  2. Abstract Active particles, such as swimming bacteria or self-propelled colloids, spontaneously assemble into large-scale dynamic structures. Geometric boundaries often enforce different spatio-temporal patterns compared to unconfined environment and thus provide a platform to control the behavior of active matter. Here, we report collective dynamics of active particles enclosed by soft, deformable boundary, that is responsive to the particles’ activity. We reveal that a quasi two-dimensional fluid droplet enclosing motile colloids powered by the Quincke effect (Quincke rollers) exhibits strong shape fluctuations with a power spectrum consistent with active fluctuations driven by particle-interface collisions. A broken detailed balance confirms the nonequilibrium nature of the shape dynamics. We further find that rollers self-organize into a single drop-spanning vortex, which can undergo a spontaneous symmetry breaking and vortex splitting. The droplet acquires motility while the vortex doublet exists. Our findings provide insights into the complex collective behavior of active colloidal suspensions in soft confinement. 
    more » « less
  3. null (Ed.)
  4. A widely used method to measure the bending rigidity of bilayer membranes is fluctuation spectroscopy, which analyses the thermally-driven membrane undulations of giant unilamellar vesicles recorded with either phase-contrast or confocal microscopy. Here, we analyze the fluctuations of the same vesicle using both techniques and obtain consistent values for the bending modulus. We discuss the factors that may lead to discrepancies. 
    more » « less
  5. We experimentally investigate the effect of lipid charge on the stiffness of bilayer membranes. The bending rigidity of membranes with composition 0–100 mol% of charged lipids, in the absence and presence of salt at different concentrations, is measured with the flicker spectroscopy method, using the shape fluctuations of giant unilamellar vesicles. The analysis considers both the mean squared amplitudes and the time autocorrelations of the shape modes. Our results show that membrane charge increases the bending rigidity relative to the charge-free membrane. The effect is diminished by the addition of monovalent salt to the suspending solutions. The trend shown by the membrane bending rigidity correlates with zeta potential measurements, confirming charge screening at different salt concentrations. The experimental results in the presence of salt are in good agreement with existing theories of membrane stiffening by surface charge. 
    more » « less