skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hampton, Don"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electron density irregularities in the ionosphere can give rise to scintillations, affecting radio wave phase and amplitude. While scintillations in the cusp and polar cap regions are commonly associated with mesoscale density inhomogeneities and/or shearing, the auroral regions exhibit a strong correlation between scintillation and density structures generated by electron precipitation (arcs). We aim to examine the impact of electron precipitation on the formation of scintillation‐producing density structures using a high‐resolution physics‐based plasma model, the “Geospace Environment Model of Ion‐Neutral Interactions,” coupled with a radio propagation model, the “Satellite‐beacon Ionospheric‐scintillation Global Model of the upper Atmosphere.” Specifically, we explore the effects of varying spatial and temporal characteristics of the precipitation, including electron total energy flux and their characteristic energies, obtained from the all‐sky‐imagers and Poker Flat Incoherent Scatter Radar observations, on auroral scintillation. To capture small‐scale structures, we incorporate a power‐law turbulence spectrum that induces short wavelength features sensitive to scintillation. Finally, we compare our simulated scintillation results with satellite‐observed scintillations, along with spectral comparisons. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. We use simultaneous auroral imaging, radar flows, and total electron content (TEC) measurements over Alaska to examine whether there is a direct connection of large-scale traveling ionospheric disturbances (LSTIDs) to auroral streamers and associated flow channels having significant ground magnetic decreases. Observations from seven nights with clearly observable flow channels and/or auroral streamers were selected for analysis. Auroral observations allow identification of streamers, and TEC observations detect ionization enhancements associated with streamer electron precipitation. Radar observations allow direct detection of flow channels. The TEC observations show direct connection of streamers to TIDs propagating equatorward from the equatorward boundary of the auroral oval. The TIDs are also distinguished from the streamers to which they connect by their wave-like TEC fluctuations moving more slowly equatorward than the TEC enhancements from streamer electron precipitation. TIDs previously observed propagating equatorward from the auroral oval have been identified as LSTIDs. Thus, the TIDs here are likely LSTIDs, but we lack sufficient TEC coverage necessary to demonstrate that they are indeed large scale. Furthermore, each of our events shows TID’s connection to groups of a few streamers and flow channels over a period in the order of 15 min and a longitude range of ∼15–20°, and not to single streamers. (Groups of streamers are common during substorms. However, it is not currently known if streamers and associated flow channels typically occur in such groups.) We also find evidence that a flow channel must lead to a sufficiently large ionospheric current for it to lead to a detectable LSTID, with a few tens of nT ground magnetic field decreases not being sufficient. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract The prediction of large fluctuations in the ground magnetic field (dB/dt) is essential for preventing damage from Geomagnetically Induced Currents. Directly forecasting these fluctuations has proven difficult, but accurately determining the risk of extreme events can allow for the worst of the damage to be prevented. Here we trained Convolutional Neural Network models for eight mid‐latitude magnetometers to predict the probability thatdB/dtwill exceed the 99th percentile threshold 30–60 min in the future. Two model frameworks were compared, a model trained using solar wind data from the Advanced Composition Explorer (ACE) satellite, and another model trained on both ACE and SuperMAG ground magnetometer data. The models were compared to examine if the addition of current ground magnetometer data significantly improved the forecasts ofdB/dtin the future prediction window. A bootstrapping method was employed using a random split of the training and validation data to provide a measure of uncertainty in model predictions. The models were evaluated on the ground truth data during eight geomagnetic storms and a suite of evaluation metrics are presented. The models were also compared to a persistence model to ensure that the model using both datasets did not over‐rely ondB/dtvalues in making its predictions. Overall, we find that the models using both the solar wind and ground magnetometer data had better metric scores than the solar wind only and persistence models, and was able to capture more spatially localized variations in thedB/dtthreshold crossings. 
    more » « less
  6. Abstract Following substorm auroral onset, the active aurora region usually expands poleward toward the poleward auroral boundary. Such poleward expansion is often associated with a bulge region that expands westward and forms the westward travelling surge. In this study, we show all‐sky imager and Poker Flat Advanced Modular Incoherent Scatter Radar observations of two surge events to investigate the relationship between the surge and ionospheric flows that likely have polar cap origin. For both events, we observe auroral streamers, with an adjacent flow channel consisting of decreased density and low electron temperature plasma flowing equatorward. This flow channel appears to impinge and lead/feed surge formation, and to stay connected to the surge as it moves westward. Also, for both events, streamer observations indicate that, following initial surge development, similar flows led to explosive surge enhancements. The observation that the streamers are connected to the auroral polar boundary and that the flow channels consisted of low density, low electron temperature plasma suggests the possibility that the impinging plasma came from the polar cap. For both events, the altitude variations of F region plasma within the surges are related with aurora emission and the poleward/equatorward flow, and the surges develop strong auroral streamers that initiate along the poleward auroral boundary when contacted with the flow. These results suggest that the flow of polar cap origin, which maps to underlying processes in the magnetotail, may play a crucial role in auroral surges by feeding low entropy plasma into surge initiation and development, and also playing an important role in the dynamics within a surge. 
    more » « less